首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThe purpose of the present study was to analyze the neuromuscular responses during the performance of a sit to stand [STS] task in water and on dry land.Scope10 healthy subjects, five males and five females were recruited for study. Surface electromyography sEMG was used for lower limb and trunk muscles maximal voluntarty contraction [MVC] and during the STS task.ResultsMuscle activity was significantly higher on dry land than in water normalized signals by MVC from the quadriceps-vastus medialis [17.3%], the quadriceps – rectus femoris [5.3%], the long head of the biceps femoris [5.5%], the tibialis anterior [13.9%], the gastrocnemius medialis [3.4%], the soleus [6.2%]. However, the muscle activity was higher in water for the rectus abdominis [?26.6%] and the erector spinae [?22.6%].ConclusionsThis study for the first time describes the neuromuscular responses in healthy subjects during the performance of the STS task in water. The differences in lower limb and trunk muscle activity should be considered when using the STS movement in aquatic rehabilitation.  相似文献   

2.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

3.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

4.
One of the challenges in collecting ground reaction force (GRF) and moment data for gait analysis is to obtain “good hits” when the subject walks past the forceplates. We examined whether centerline-guided walking would significantly increase the chance of good hits and alter gait characteristics. Thirty-five healthy individuals (age: 37±13 yrs) walked on a walkway with five embedded forceplates at comfortable self-selected speeds under two conditions: (1) free walking and (2) walking along a centerline and avoiding stepping on it. Gait kinematics and GRF were collected using an 8-camera optoelectronic system and five forceplates, respectively. Surface electromyographic (EMG) activity of the rectus femoris, hamstring, gastrocnemius (GAS), and tibialis anterior (TA) were monitored bilaterally. The probability of good hits significantly increased with the centerline-guided walking (p=0.008). Repeated measures MANOVA and follow-up univariate tests revealed no significant differences between the two conditions in any of the spatiotemporal parameters except for a significant increase in step width with centerline walking (p<0.001). Centerline guiding significantly increased peak mediolateral GRF (p<0.001) and hip adduction/abduction and ankle internal/external rotation ranges of motion (p<0.01). In addition, the average EMG activity in GAS and TA during the stance phase significantly increased with the centerline walking (p<0.001). In general, the centerline walking tended to impact women more than men. Centerline-guided walking increases the chance of good hits but biomechanical characteristics of gait in the frontal and transverse planes and EMG activity should be interpreted with caution, especially in women.  相似文献   

5.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

6.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

7.
The goal of this study was to identify changes in muscle activity in below-knee amputees in response to increasing steady-state walking speeds. Bilateral electromyographic (EMG) data were collected from 14 amputee and 10 non-amputee subjects during four overground walking speeds from eight intact leg and five residual leg muscles. Using integrated EMG measures, we tested three hypotheses for each muscle: (1) there would be no difference in muscle activity between the residual and intact legs, (2) there would be no difference in muscle activity between the intact leg and non-amputee legs, and (3) muscle activity in the residual and intact legs would increase with speed. Most amputee EMG patterns were similar between legs and increased in magnitude with speed. Differences occurred in the residual leg biceps femoris long head, vastus lateralis and rectus femoris, which increased in magnitude during braking compared to the intact leg. These adaptations were consistent with the need for additional body support and forward propulsion in the absence of the plantar flexors. With the exception of the intact leg gluteus medius, all intact leg muscles exhibited similar EMG patterns compared to the control leg. Finally, the residual, intact and control leg EMG all had a significant speed effect that increased with speed with the exception of the gluteus medius.  相似文献   

8.
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients.  相似文献   

9.
10.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

11.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

12.
Head movements, ground reaction forces and electromyographic activity of selected muscles were recorded simultaneously from two subjects as they performed the sit-to-stand manouevre under a variety of conditions. The influence of initial leg posture on the magnitude of the various parameters under investigation was examined first. A preferred initial leg posture resulted in smaller magnitudes of head movement and ground reaction forces. EMG activity in some muscles, trapezius and erector spinae, decreased, while in others, quadriceps and hamstrings, it increased in the preferred leg posture. The decreases seen correlate with reductions in head movement observed. The effect of inhibiting habitual postural adjustments of the head and neck, by comparing "free" and "guided" movements was also examined. In guided movements there are significant reductions in head movement, ground reaction forces and EMG activity in trapezius, sternomastoid and erector spinae. It would appear that both initial leg posture and the abolition of habitual postural adjustment have a profound influence on the efficiency of the sit-to-stand manouevre. This preliminary study high-lights the practical importance of head posture in the diagnosis and treatment of movement disorders, as well as in movement education.  相似文献   

13.
The objective of this study was to measure the electromyographic (EMG) activity of the soleus, bicep femoris, rectus femoris, lower abdominal, and lumbosacral erector spinae (LSES) muscles with a variety of (a) instability devices, (b) stable and unstable (Dyna Disc) exercises, and (c) a fatiguing exercise in 16 highly conditioned individuals. The device protocol had participants assume standing and squatting postures while balancing on a variety of unstable platforms (Dyna Disc, BOSU ball, wobble board, and a Swiss ball) and a stable floor. The exercise protocol had subjects performing, static front lunges, static side lunges, 1-leg hip extensions, 1-leg reaches, and calf raises on a floor or an unstable Dyna Disc. For the fatigue experiment, a wall sit position was undertaken under stable and unstable (BOSU ball) conditions. Results for the device experiment demonstrated increased activity for all muscles when standing on a Swiss ball and all muscles other than the rectus femoris when standing on a wobble board. Only lower abdominals and soleus EMG activity increased while squatting on a Swiss ball and wobble board. Devices such as the Dyna Disc and BOSU ball did not exhibit significant differences in muscle activation under any conditions, except the LSES in the standing Dyna Disc conditions. During the exercise protocol, there were no significant changes in muscle activity between stable and unstable (Dyna Disc) conditions. With the fatigue protocol, soleus EMG activity was 51% greater with a stable base. These results indicate that the use of moderately unstable training devices (i.e., Dyna Disc, BOSU ball) did not provide sufficient challenges to the neuromuscular system in highly resistance-trained individuals. Since highly trained individuals may already possess enhanced stability from the use of dynamic free weights, a greater degree of instability may be necessary.  相似文献   

14.
Purpose: To analyze rectus femoris activity during seated to standing position and walking in water and on dry land comparing a group of children with the spastic diparesis type of cerebral palsy (CP) and a group of children without neurological disorders. Methods: This study included a group of nine children with CP and a control group of 11 children. The study compared the electromyographic activity of the rectus femoris during seated to standing position and walking, in water and on land. Results: A greater activation of the rectus femoris was observed in the group of children with CP compared with the control group when moving from a seated position to a standing position in water (p = 0.0039) and while walking on land (p = 0.0014) or in the pool (p = 0.007). Conclusion: This study demonstrated the activation of the rectus femoris while walking or standing up from a seated position in water was greater in the group of children with CP. Further studies should be performed to better understand the extent of muscular activation during body immersion in individuals with neurological disorders.  相似文献   

15.
This study aimed to examine whether walking in water produces age-related differences in muscle activity, stride frequency (SF), and heart rate (HR) response. Surface electromyography (EMG) was used to evaluate muscle activities in six older and six young subjects while they walked in water immersed to the level of the xiphoid process. The trials in water utilized the Flowmill which consists of a treadmill at the base of a water flume. The measurement of maximal voluntary contraction (MVC) of each muscle was made prior to the gait analysis. The %MVCs, which refer to the surface EMG measures, from the gastrocnemius of the older subjects were significantly lower than those of the young subjects, in every experimental condition (P<0.05). In contrast, the %MVCs from the rectus femoris (P<0.05) and the biceps femoris (P<0.001) of older subjects were significantly greater than those of young subjects in every experimental condition. Moreover, the SFs of older subjects were also significantly greater than those of young subjects (P<0.05), while the HR responses of older and young subjects were similar. In conclusion, the older subjects had increased hip musculature activity and decreased ankle plantar flexor activity while walking in water, compared with the young subjects.  相似文献   

16.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

17.
Ten normal subjects performed continuous trunk flexion/extensions (F/E) without any restraining apparatus at free, 3, 2.25 and 1.5 s periods and a fatiguing task of F/E at 1.5 s period during 45 s. Kinematics of the trunk was obtained with bilateral electromyographic (EMG) activity of the erector spinae (three levels), the abdominal oblique muscles and the rectus abdominis muscles. The free period chosen by the subjects was found to vary between 3.05 and 1.47 s. Lateral flexion of the spine was similar in each task but rotation about its longitudinal axis increased as the F/E period shortened. When left and right side EMG signals were grouped by level of recording, a significant difference in activity was found. Subjects who produced the slowest free F/E displayed larger fatigue indexes derived from the EMG signals for some of their back muscles than for other subjects. The flexion/relaxation phenomenon was considered present in a muscle if a level <10% of the maximum signal recorded during extension was detected. The phenomenon was found in >50% of the observations and occurred at a similar angle in each task. Kinematics and several characteristics of the EMG signals of the trunk were statistically independent of the speed of motion.  相似文献   

18.
This study investigated variations in electromyographic (EMG) responses of the erector spinae (ES), vastus medialis (VM), rectus femoris (RF), and vastus lateralis (VL) to different seatback angles during leg extension. Twenty men and women (10 men, 10 women; age 27.49 +/- 6.16 years) performed 8 repetitions at 70% of 8 repetition maximum at seatback angles of 1.57, 1.75, and 1.92 radius (rad). Analyses using repeated-measures analysis of variance indicated the greatest root square mean of the EMG (rmsEMG) and integrated EMG (intEMG) for the ES were at 1.92 rad, and the greatest for the VM (concentric) and VL (eccentric) were at 1.57 rad. No differences were observed among seat angles for the RF except for a higher normalized intEMG at 1.92 than 1.75 rad (concentric). Throughout all sets for all conditions and muscles, rmsEMG and intEMG significantly increased and median power frequency significantly decreased. These data indicate that a seatback angle of 1.57 rad is best for a leg extension machine, because this angle maximizes quadriceps activity while minimizing stress on the lower back muscles.  相似文献   

19.
The aim of this study was to explore the electromyographic, kinetic and kinematic patterns during a partially restricted sit-to-stand task in subjects with and without Parkinson’s disease (PD). If the trunk is partially restricted, different behavior of torques and muscle activities could be found and it can serve as a reference of the deterioration in the motor performance of subjects with PD. Fifteen subjects participated in this study and electromyography (EMG) activity of the tibialis anterior (TA), soleus (SO), vastus medialis oblique (VMO), biceps femoris (BF) and erector spinae (ES) were recorded and biomechanical variables were calculated during four phases of the movement. Subjects with PD showed more flexion at the ankle, knee and hip joints and increased knee and hip joint torques in comparison to healthy subjects in the final position. However, these joint torques can be explained by the differences in kinematic data. Also, the hip, knee and ankle joint torques were not different in the acceleration phase of movement. The use of a partially restricted sit-to-stand task in PD subjects with moderate involvement leads to the generation of joint torques similar to healthy subjects. This may have important implications for rehabilitation training in PD subjects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号