首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using purified P-glycoprotein to understand multidrug resistance   总被引:2,自引:0,他引:2  
Since P-glycoprotein was discovered almost 20 years ago, its causative role in multidrug resistance has been established, but central problems of its biochemistry have not been definitively resolved. Recently, major advances have been made in P-glycoprotein biochemistry with the use of purified and reconstituted P-glycoprotein, as well as membranes from nonmammalian cells containing heterologously expressed P-glycoprotein. In this review we describe recent findings using these systems which are elucidating the molecular mechanism of P-glycoprotein-mediated drug transport.  相似文献   

2.
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require 12 -helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.  相似文献   

3.
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 α-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

5.
Rat hepatoma cells lacking mitochondrial DNA (ρ° cells) were used as a model system to examine the possible roles of mitochondrial DNA as a target for the DNA-acting anticancer drug Adriamycin (doxorubicin). The ρ° cells were 45-fold less sensitive to Adriamycin than the parental ρ+ cells containing mitochondrial DNA. Other non-DNA-acting drugs also exhibited similar behaviour, and this was shown to be due to a multidrug resistance (MDR) phenotype in the ρ° cells. This was indicated by confocal microscopy where ρ+ cells exhibited thirteenfold higher cellular levels of Adriamycin than ρ° cells. Upregulation (tenfold) of P-glycoprotein in ρ° cells was also confirmed by Northern dot blot analysis. Since the MDR phenotype is present in ρ° cells and upregulation of P-glycoprotein is maintained in these cells, ρ° cells are not a good model system for drug-DNA studies (where the drug is susceptible to extrusion by P-glycoprotein), and any such results obtained with this system must be treated with considerable caution. J. Cell. Biochem. 69:463–469, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
线粒体DNA缺失细胞(ρ~0细胞)拮抗化疗药物诱导的凋亡,但其确切机制尚不明确。本研究探讨P-gp线粒体转位与人肝癌细胞(SK-Hepl)mtDNA缺失细胞(ρ~0SK-Hep1)多药耐药产生的关系。以SK-Hep1、ρ~0SK-Hep1和转线粒体细胞SK-Hep1Cyb为研究对象,CCK-8方法检测细胞对药物敏感性;AnnexinV/PI双染法及DAPI染色法检测细胞凋亡;Westernblot检测P-gp表达;激光共聚焦显微镜结合免疫荧光检测P-gP细胞内分布。结果显示,SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞对多柔比星(DOX)的IC_(50)分别为0.62±0.02μg/ml、4.93±0.17μg/ml和0.57±0.02μg/ml。SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞凋亡率分别为1 1.25%±1.36%、4.75%±0.98%和14.50%±1.57%,ρ~0SK-Hep1对细胞凋亡有明显抗性。Western blot检测发现ρ~0细胞内P-gP、Bax、Bcl-2表达增加,Bcl-2/Bax比值增加。免疫荧光共定位显示,ρ~0细胞线粒体内P-gP...  相似文献   

7.
结肠癌是常见的消化道恶性肿瘤。对术后患者以及无法采用手术治疗的患者,临床多采用化疗、放疗等综合性治疗方法。随着大量化疗药物在临床的广泛使用,结肠癌多药耐药性成为化疗失败的最主要原因。研究表明,P-糖蛋白(P-glycoprotein, P-gp)作为ATP结合盒(ABC)转运蛋白超家族成员之一,与多种肿瘤的多药耐药相关,其介导的多药耐药已经成为目前研究的热点。本文旨在通过对P-糖蛋白的结构、耐药机制以及逆转P-糖蛋白介导的结肠癌多药耐药新发现进行阐述,引导读者对P-糖蛋白在结肠癌多药耐药中的作用有更深入的了解。  相似文献   

8.
Effects of phosphorylation of P-glycoprotein on multidrug resistance   总被引:2,自引:0,他引:2  
Cells expressing elevated levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug resistance phenotype. Studies involving protein kinase activators and inhibitors have implied that covalent modification of P-glycoprotein by phosphorylation may modulate its biological activity as a multidrug transporter. Most of these reagents, however, have additional mechanisms of action and may alter drug accumulation within multidrug resistant cells independent of, or in addition to their effects on the state of phosphorylation of P-glycoprotein. The protein kinase(s) responsible for P-glycoprotein phosphorylation has(ve) not been unambiguously identified, although several possible candidates have been suggested. Recent biochemical analyses demonstrate that the major sites of phosphorylation are clustered within the linker region that connects the two homologous halves of P-glycoprotein. Mutational analyses have been initiated to confirm this finding. Preliminary data obtained from phosphorylation- and dephosphorylation-defective mutants suggest that phosphorylation of P-glycoprotein is not essential to confer multidrug resistance.  相似文献   

9.
为寻找能有效逆转肿瘤细胞多药耐药性的药物,通过体外细胞实验对Ams-11、Fw-13、Tul-17三种中药制剂逆转肿瘤细胞多药耐药性的作用进行了分析。并用流式细胞仪测定了Tul-17处理细胞后药物累积程度的变化及细胞P糖蛋白表达情况。为进一步研究体外细胞实验筛选出的多药耐药逆转剂在体内的药效学,将其中Fw13用于人白血病K562/ADR裸鼠移植瘤逆转试验。结果:在无细胞毒性的剂量范围内,该三种中药制剂均能明显增强多药耐药细胞对抗癌药物的敏感性,而且其逆转作用呈剂量依赖关系。Tu-17处理后,K562耐药细胞表达的P糖蛋白较对照降低1.5倍,对罗丹明123的累积量是对照的2.5倍。用Fw13治疗人白血病K562/ADR裸鼠移植瘤,可将硫酸长春新碱(VCR)对K562/ADR的抑瘤率从19.79%提高到86.59%,与单独VCR治疗疗效有显著性差异(P<0.05)。结果表明,这三种中药制剂可望成为肿瘤多药耐药逆转剂,在肿瘤化疗中发挥作用。  相似文献   

10.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

12.
1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain.2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter.3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood–brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane.4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood–brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (V D) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood–brain barrier permeability, per se, but only an increase in the V D in brain of P-glycoprotein substrates.  相似文献   

13.
We investigated the cellular/subcellular localization and functional expression of P-glycoprotein, an ATP-dependent membrane-associated efflux transporter, in astrocytes, a brain parenchyma compartment that is poorly characterized for the expression of membrane drug transporters. Analyses were carried out on primary cultures of astrocytes isolated from the cerebral cortex of neonatal Wistar rats and CTX TNA2, an immortalized rat astrocyte cell line. Both cell cultures display morphological features typical of type I astrocytes. RT-PCR analysis revealed mdr1a and mdr1b mRNA in primary cultures of astrocytes and in CTX TNA2 cells. Western blot analysis using the P-glycoprotein monoclonal C219 antibody detected a single band of appropriate size in both cell systems. Immunocytochemical analysis using the monoclonal antibodies C219 and MRK16 labeled P-glycoprotein along the plasma membrane, caveolae, coated vesicles and nuclear envelope. Immunoprecipitation studies using the caveolin-1 polyclonal H-97 antibody demonstrated that P-glycoprotein is physically associated with caveolin-1 in both cell culture systems. The accumulation of [(3)H]digoxin (an established P-glycoprotein substrate) by the astrocyte cultures was significantly enhanced in the presence of standard P-glycoprotein inhibitors and an ATP depleting agent. These results demonstrate the cellular/subcellular location and functional expression of P-glycoprotein in rat astrocytes and suggest that this glial compartment may play an important role in the regulation of drug transport in the CNS.  相似文献   

14.
Multidrug resistance (MDR) remains a significant challenge in cancer chemotherapy due to the overexpression of ATP-binding cassette drug-efflux transporters, namely P-glycoprotein (P-gp)/ATP-binding cassette subfamily B member 1. In this study, derivatives of N-alkylated monoterpene indole alkaloids such as N-(para-bromobenzyl) (NBBT), N-(para-methylbenzyl) (NMBT), and N-(para-methoxyphenethyl) (NMPT) moieties were investigated for the reversal of P-gp-mediated MDR in drug-resistant KB colchicine-resistant 8-5 (KB-ChR-8-5) cells. Among the three indole alkaloid derivatives, the NBBT exhibited the highest P-gp inhibitory activity in a dose-dependent manner. Further, it significantly decreased P-gp overexpression by inactivating the nuclear translocation of the nuclear factor kappa B p-50 subunit. In the cell survival assay, doxorubicin showed 6.3-fold resistance (FR) in KB-ChR-8-5 cells compared with its parental KB-3-1 cells. However, NBBT significantly reduced doxorubicin FR to 1.7, 1.3, and 0.4 and showed strong synergism with doxorubicin for all the concentrations studied in the drug-resistant cells. Furthermore, NBBT and doxorubicin combination decreased the cellular migration and showed increased apoptotic incidence by downregulating Bcl-2, then activating BAX, caspase 3, and p53. The present findings suggest that NBBT could be a lead candidate for the reversal of P-gp- mediated multidrug resistance in cancer cells.  相似文献   

15.
In this review we analyze the data supporting the notion that vault-related MDR, as reflected by LRP/MVP overexpression, represents a marker of drug resistance in vitro and in the clinic. Vaults, besides playing a fundamental biological role, may be involved in a novel mechanism of MDR. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.  相似文献   

17.
The multidrug efflux pump P-glycoprotein (P-gp) contributes to multidrug resistance in about half of human cancers. Recently, high resolution X-ray crystal structures of mouse P-gp (inward-facing) were reported, which significantly facilitates the understanding of the function of P-gp and the structure-based design of inhibitors for P-gp. Here we perform 20?ns molecular dynamics simulations of inward-facing P-gp with/without ligand in explicit lipid and water to investigate the flexibility of P-gp for its poly-specific drug binding. By analyzing the interactions between P-gp and QZ59-RRR or QZ59-SSS, we summarize the important residues and the flexibility of different parts of P-gp. Particularly, the flexibility of the side chains of aromatic residues (Phe and Tyr) allows them to form rotamers with different orientations in the binding pocket, which plays a critical role for the poly-specificity of the drug-binding cavity of P-gp. MD simulations reveal that trans-membrane (TM) TM12 and TM6 are flexible and contribute to the poly-specific drug binding, while TM4 and TM5 are rigid and stabilize the whole structure. We also construct outward-facing P-gp based on the MsbA structure and perform 20?ns MD simulations. The comparison between the MD results for outward-facing P-gp and those for inward-facing P-gp shows that the TM parts in outward-facing P-gp undergo significant conformational change to facilitate the export of small molecules.  相似文献   

18.
Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cell lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor forin vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs.Abbreviations LRP Lung Resistance-related Protein - MVP Major Vault Protein - MDR Multidrug resistance - MRP Multidrug resistance-associated Protein - NPC Nuclear Pore Complex - Pgp P-glycoprotein  相似文献   

19.
20.
Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by suppressing P-glycoprotein (P-gp) and soluble resistance-related calcium-binding protein (SORCIN) independently. To reverse MDR more effectively, a new strategy was raised, that is, circumventing MDR by the coadministration of DMY and ondansetron (OND), a common antiemetic drug, during cancer chemotherapy. Meanwhile, the interior relation between P-gp and SORCIN was also revealed. The combination of DMY and OND strongly enhanced antiproliferative efficiency of adriamycin (ADR) because of the increasing accumulation of ADR in K562/ADR-resistant cell line. DMY could downregulate the expression of SORCIN and P-gp via the ERK/Akt pathways, whereas OND could not. In addition, it was proved that SORCIN suppressed ERK and Akt to inhibit P-gp by the silence of SORCIN, however, not vice versa. Finally, the combination of DMY, OND, and ADR led to G2/M cell cycle arrest and apoptosis via resuming P53 function and restraining relevant proteins expression. These fundamental findings provided a promising approach for further treatment of MDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号