首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以中亚热带典型的马尾松林、湿地松林和马尾松-木荷混交林(针阔混交林)为研究对象,分析不同林分类型下0~10和10~20 cm土层的β-D-葡萄糖苷酶(BG)、β-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、酸性磷酸酶(AP)、多酚氧化酶(POX)、过氧化物酶(POD)6种土壤酶活性,以及酶化学计量比及土壤理化性质特征,分析驱动中亚热带典型林分类型土壤酶活性及其计量比变异的主要因素。结果表明: 林分类型显著影响了土壤BG和LAP活性,表现为湿地松林10~20 cm土层土壤BG显著高于马尾松林,而LAP在马尾松林最高;湿地松林10~20 cm土层土壤BG/(NAG+LAP)、BG/AP显著高于马尾松林,而马尾松林(NAG+LAP)/AP显著高于湿地松林和针阔混交林;林分类型间酶化学计量的向量长度在10~20 cm土层差异显著,表现为湿地松林>针阔混交林>马尾松林。3种人工林酶化学计量的向量角度均大于45°,其中在湿地松林10~20 cm土层向量角度显著大于马尾松林。冗余分析表明,土壤碳质量指数和有机碳与全磷的比值(C/P)以及土壤含水量和C/P分别是0~10和10~20 cm土层土壤酶活性及其化学计量的关键影响因素,土壤碳和磷的数量和质量,以及土壤含水量在调节中亚热带人工林生态系统养分循环中发挥关键作用。  相似文献   

2.
曾清苹  何丙辉  毛巧芝  秦华军  李源  黄祺 《生态学报》2016,36(11):3244-3252
氮沉降对土壤呼吸的影响仍然存在着争论,需要进一步研究。选择重庆缙云山的马尾松林和柑橘林开展了氮添加实验,分别设置3个氮添加水平(低氮T_5:20 g N m~(-2)a~(-1),中氮T_(10):40 g N m~(-2)a~(-1)和高氮T_(15):60 g N m~(-2)a~(-1))和对照(T_0:0 g N m~(-2)a~(-1))共4个水平的处理,各林分每个处理各9次重复,每个处理量分4次,在每个季度开始各施1次。采用ACE(Automated Soil CO_2 Exchange Station,UK)自动土壤呼吸监测系统测定两林分土壤表层(0—10 cm)的呼吸、温度和湿度,分别在当年的7月、9月、11月、第2年的1月、2月、3月、5月、6月各连续测定4d,每天(8:00—18:00)4次,以揭示两种林分土壤呼吸对模拟氮沉降的季节动态响应及其差异性。结果表明:(1)柑橘林与马尾松林林下土壤表层呼吸表现出一致的季节变化动态趋势:夏季春季秋季冬季,但柑橘林土壤呼吸显著高于马尾松林(P0.05)。(2)总体上氮沉降抑制了2种林分土壤表层呼吸,而N沉降量大抑制程度越高。只在冬季土壤湿度低的马尾松林下氮沉降促进了土壤呼吸。(3)土壤温度与土壤呼吸有极显著的正相关指数关系(P0.01),而土壤水分与土壤呼吸有显著的二次模型拟合关系,但均受到氮沉降量处理的影响。综合分析表明,在亚热带山区2类森林下的典型案例结果支持氮沉降抑制土壤呼吸的认识。  相似文献   

3.
土壤异养呼吸在野外自然条件下除受温湿度影响外, 还受其他多种因子的综合影响, 很难利用野外观测数据确定土壤异养呼吸对温湿度变化的响应方程形式, 以及温湿度间是否存在交互作用。该研究在严格控制温湿度的条件下对内蒙古克氏针茅(Stipa krylovii)(西北针茅(Stipa sareptana var. krylovii))草原土样进行室内培养实验, 旨在解决上述问题。该研究的正交实验包括5个温度梯度(9、14、22、30、40 ℃)和5个湿度梯度(土壤持水力(water holding capacity, WHC)分别为20%、40%、60%、80%、100%)。室内培养实验持续71天, 土壤异养呼吸速率测定为2天(后期为1周)一次, 土壤可溶性有机碳和微生物生物量碳含量测定约为18天一次。研究结果显示: 土壤异养呼吸与温度呈显著正相关(p < 0.001)且温度间差异显著(p = 0.001), 呼吸温度敏感性(Q10)与土壤水分含量呈正相关(p < 0.001); 呼吸与土壤水分二项式拟合效果较好, 在80% WHC时呼吸速率最大, 且最适湿度随温度上升而增加。土壤温度和水分的交互作用显著(p < 0.05), 土壤异养呼吸最适响应方程为lnRh = 0.914 + 0.098T + 0.046M + 0.001TM - 0.002T2 - 0.001M2 (Rh为异养呼吸, T为温度, M为湿度), 这说明加和形式的温湿度响应模型可能优于乘积形式。微生物生物量碳与土壤异养呼吸的相关性随培养时间发生变化, 土壤可溶性有机碳与土壤异养呼吸无显著相关(培养第20天除外), 原因可能是培养期间微生物死亡或群落结构改变导致微生物总体代谢活性的变化。  相似文献   

4.
《植物生态学报》2014,38(3):238
土壤异养呼吸在野外自然条件下除受温湿度影响外, 还受其他多种因子的综合影响, 很难利用野外观测数据确定土壤异养呼吸对温湿度变化的响应方程形式, 以及温湿度间是否存在交互作用。该研究在严格控制温湿度的条件下对内蒙古克氏针茅(Stipa krylovii)(西北针茅(Stipa sareptana var. krylovii))草原土样进行室内培养实验, 旨在解决上述问题。该研究的正交实验包括5个温度梯度(9、14、22、30、40 ℃)和5个湿度梯度(土壤持水力(water holding capacity, WHC)分别为20%、40%、60%、80%、100%)。室内培养实验持续71天, 土壤异养呼吸速率测定为2天(后期为1周)一次, 土壤可溶性有机碳和微生物生物量碳含量测定约为18天一次。研究结果显示: 土壤异养呼吸与温度呈显著正相关(p < 0.001)且温度间差异显著(p = 0.001), 呼吸温度敏感性(Q10)与土壤水分含量呈正相关(p < 0.001); 呼吸与土壤水分二项式拟合效果较好, 在80% WHC时呼吸速率最大, 且最适湿度随温度上升而增加。土壤温度和水分的交互作用显著(p < 0.05), 土壤异养呼吸最适响应方程为lnRh = 0.914 + 0.098T + 0.046M + 0.001TM - 0.002T2 - 0.001M2 (Rh为异养呼吸, T为温度, M为湿度), 这说明加和形式的温湿度响应模型可能优于乘积形式。微生物生物量碳与土壤异养呼吸的相关性随培养时间发生变化, 土壤可溶性有机碳与土壤异养呼吸无显著相关(培养第20天除外), 原因可能是培养期间微生物死亡或群落结构改变导致微生物总体代谢活性的变化。  相似文献   

5.
鹤山不同植被类型土壤惰性碳含量及其季节变化特征   总被引:1,自引:0,他引:1  
为探讨植被恢复下森林土壤惰性碳(Non-labile carbon, NLC)的分布和季节动态,对鹤山6种不同植被类型(灌草、马尾松、桉树、乡土树种、马占相思、季风常绿阔叶林)不同土层(0~10 cm、10~20 cm和20~40 cm)NLC进行研究。结果表明: 6种植被类型土壤NLC含量均以表层(0~10 cm)最高,且随土层深度增加有下降趋势。表层土壤NLC含量受植被类型的影响显著,马占相思林的土壤NLC含量显著高于其他林型;马尾松林的土壤NLC含量最低,与其他林型差异显著。马占相思林深层土壤(10~20 cm和20~40 cm)的NLC含量显著高于其它植被类型,其它植被类型间无显著差异。不同植被类型的土壤NLC含量具有不同的干湿季动态变化,湿季土壤NLC占土壤总有机碳(Soil organic carbon, SOC)的比值高于干季。从不同土层NLC占SOC的比例可见,马占相思林和灌草林能显著提高土壤不同层次的NLC含量,马尾松林、桉树林、乡土树林和季风常绿阔叶林则有利于提高深层土壤SOC稳定性。  相似文献   

6.
研究了南亚热带主要森林类型 (马尾松林、混交林和季风常绿阔叶林 )土壤有效氮含量对模拟氮沉降的初期响应。结果显示 :(1)马尾松林、混交林和阔叶林 0~ 10 cm和 10~ 2 0 cm两个土层有效氮 (铵态氮 硝态氮 )含量总平均分别为 6 .2 4、6 .2 2和14 .77m g/kg,其中铵态氮占 4 5 .3%、4 8.7%和 14 .5 %。 (2 )外加氮处理使 3个森林两个土层的有效氮含量都在增加 ,但其影响程度取决于土层、氮处理水平、氮处理时间和森林类型。总体而言 ,0~ 10 cm土层略比 10~ 2 0 cm土层敏感 ;氮处理水平越高土壤有效氮增加越多 ;外加氮处理时间越长 ,处理样方与对照样方的差距越大 ;阔叶林的响应稍落后于马尾松林和混交林  相似文献   

7.
热带、亚热带典型森林-土壤系统植硅体碳演变规律   总被引:1,自引:0,他引:1  
分别选取中国亚热带毛竹林、马尾松林、青冈林、杉木林和热带青梅林、芭蕉林、橡胶林、马占相思林8种森林类型,采集其鲜叶、凋落叶以及0~10和10~30 cm土层土壤,通过微波消解法提取其中的植硅体,并采用碱溶法测定植硅体中碳含量.结果表明: 4种亚热带森林类型鲜叶、凋落叶和0~10 cm土层中植硅体碳含量均以马尾松林(230.24、229.17、20.87 g·kg-1)最高,毛竹林(30.55、37.37、3.38 g·kg-1)最低,10~30 cm土层则以青冈林(18.54 g·kg-1)最高,毛竹林(2.90 g·kg-1)最低.热带森林鲜叶中植硅体碳含量以马占相思林(377.66 g·kg-1)最高,青梅林(46.83 g·kg-1)最低,凋落叶中则是橡胶林(218.23 g·kg-1)最高,芭蕉林(27.66 g·kg-1)最低,而0~10和10~30 cm土层土壤中均以马占相思林(23.84、24.90 g·kg-1)最高,芭蕉林(3.89、3.93 g·kg-1)最低.与0~10 cm表层土相比,杉木林、青冈林、马尾松林、毛竹林、橡胶林、马占相思林、芭蕉林和青梅林鲜叶植硅体碳含量分别下降97.4%、94.9%、90.9%、88.9%、95.9%、93.7%、93.3%和63.7%.青冈林、芭蕉林和马占相思林鲜叶植硅体碳含量显著高于凋落叶,而毛竹林、马尾松林、杉木林、青梅林和橡胶林之间无显著差异.8种森林类型土壤植硅体碳含量均显著低于鲜叶和凋落叶,表明植硅体在通过凋落物释放到土壤的过程中是不稳定的.  相似文献   

8.
江远清  莫江明  方运霆  李志安   《广西植物》2007,27(1):106-113
研究鼎湖山自然保护区马尾松林、马尾松荷木混交林和季风常绿阔叶林三种代表性森林类型表层土壤(0~20cm)交换性阳离子含量及其季节动态。结果表明:土壤交换性阳离子含量因元素种类、森林类型和季节不同而异。三种森林土壤交换性阳离子含量都表现为:Al3+>H+>K+>Ca2+、Mg2+、Na+。几乎所有调查的阳离子含量在阔叶林显著高于马尾松林和混交林,但后两者之间大多数阳离子含量差异不显著。鼎湖山森林土壤可交换性阳离子含量虽然较高,但盐基饱和度却很低。马尾松林、混交林和阔叶林土壤可交换性阳离子含量在1997年6月份分别为:58.3、84.5和118.7mmolc/kg,盐基饱和度分别为:5.5%、3.2%和4.5%。三种森林土壤交换性Ca2+、Mg2+、K+和H+含量季节差异极显著(P<0.001),但交换性Al3+含量只在马尾松林土壤存在极显著的季节性差异(P<0.001)。同一元素季节变化大小程度趋向马尾松林>混交林>阔叶林。森林土壤交换性Ca2+、Na+和H+含量与土壤pH值相关关系不明显,但交换性Mg2+、K+和Al3+与土壤pH值间呈极显著负相关。  相似文献   

9.
为把握森林土壤温度及土壤异养呼吸对气候变暖的响应,利用1986—2013年哀牢山亚热带常绿阔叶林土壤温度观测数据模拟土壤温度未来上升2℃需要的时间,采用2011—2013年人工控制土壤增温试验中切根处理(NR)与切根增温处理(SW)的观测数据,结合WNMM模型及SRES情景下A2与B2未来气候数据模拟哀牢山森林土壤异养呼吸对气候变暖的响应。结果表明:5 cm土壤温度增加速率为0.224℃·10 a~(-1),自然增温2℃需要90 a;NR与SW处理下土壤Q_(10)值分别为5.17和4.50,根据Q_(10)值进行计算,NR处理在土温升高2℃后土壤异养呼吸较SW处理实测值升高14.6%;经过校正、验证后WNMM模型可以模拟土壤水分(P0.001)与土壤温度的变化(P0.001);A2、B2情景下,NR处理土壤异养呼吸较SW处理分别升高10.2%和9.8%;A2情景下土壤异养呼吸较B2情景下土壤异养呼吸,在NR、SW处理下分别升高7.0%和6.6%。本研究中数学模拟会高估土壤异养呼吸,表明野外的实测试验是不可替代的评估土壤异养呼吸对气候变暖响应的方法。  相似文献   

10.
李娇  尹春英  周晓波  魏宇航  高巧  刘庆 《生态学报》2014,34(19):5558-5569
开展土壤呼吸对大气氮沉降增加的响应研究对预测陆地生态系统碳循环具有重要意义。采用外施氮肥模拟氮沉降,结合壕沟法分离土壤呼吸组分,研究青藏高原东缘主要的灌丛类型——窄叶鲜卑花(Sibiraea angustata)灌丛土壤呼吸对不同施氮水平(N0(对照)、N2、N5和N10分别相当于0、2、5和10 g N m-2a-1浓度的氮沉降)的短期响应。结果表明:试验期间(2012年5—10月份),(1)土壤呼吸呈现明显的季节变化,施氮对生长季土壤总呼吸、异养呼吸无显著影响,而对自养呼吸有显著的抑制作用(P0.05)。(2)土壤呼吸也存在显著的日变化,施氮对一天中土壤总呼吸及其组分均有显著影响(P0.001)。总体上,施氮促进了土壤总呼吸、异养呼吸,而抑制了自养呼吸。(3)施氮对土壤总呼吸、异养呼吸平均每月排放CO2通量无显著影响,而对自养呼吸平均每月排放CO2通量有显著的抑制作用(P0.05),并在不同月份对土壤呼吸及其组分的影响不同。(4)土壤总呼吸、异养呼吸与地下5 cm土壤温度之间具有较好的指数关系(P0.001),而与土壤含水量相关性较弱。关于土壤呼吸各组分对大气氮沉降响应差异的机理有待进一步研究。  相似文献   

11.
Aims Boreal forest is the largest and contains the most soil carbon among global terrestrial biomes. Soil respiration during the prolonged winter period may play an important role in the carbon cycles in boreal forests. This study aims to explore the characteristics of winter soil respiration in the boreal forest and to show how it is regulated by environmental factors, such as soil temperature, soil moisture and snowpack.Methods Soil respiration in an old-growth larch forest (Larix gmelinii Ruppr.) in Northeast China was intensively measured during the winter soil-freezing process in 2011 using an automated soil CO2 flux system. The effects of soil temperature, soil moisture and thin snowpack on soil respiration and its temperature sensitivity were investigated.Important findings Total soil respiration and heterotrophic respiration both showed a declining trend during the observation period, and no significant difference was found between soil respiration and heterotrophic respiration until the snowpack exceeded 20cm. Soil respiration was exponentially correlated with soil temperature and its temperature sensitivity (Q 10 value) for the entire measurement duration was 10.5. Snow depth and soil moisture both showed positive effects on the temperature sensitivity of soil respiration. Based on the change in the Q 10 value, we proposed a 'freeze–thaw critical point' hypothesis, which states that the Q 10 value above freeze–thaw critical point is much higher than that below it (16.0 vs. 3.5), and this was probably regulated by the abrupt change in soil water availability during the soil-freezing process. Our findings suggest interactive effects of multiple environmental factors on winter soil respiration and recommend adopting the freeze–thaw critical point to model soil respiration in a changing winter climate.  相似文献   

12.
增温和刈割对高寒草甸土壤呼吸及其组分的影响   总被引:1,自引:0,他引:1  
蒙程  牛书丽  常文静  全权  曾辉 《生态学报》2020,40(18):6405-6415
评估土壤呼吸及其组分对增温等全球变化的响应对于预测陆地生态系统碳循环至关重要。本研究利用红外线辐射加热器(Infrared heater)装置在青藏高原高寒草甸生态系统设置增温和刈割野外控制实验。通过测定2018年生长季(5—9月)土壤呼吸和异养呼吸,探究增温和刈割对土壤呼吸及其组分的影响。研究结果表明:(1) 单独增温使土壤呼吸显著增加31.65% (P<0.05),异养呼吸显著增加27.12% (P<0.05),土壤自养呼吸没有显著改变(P>0.05);单独刈割对土壤呼吸和自养呼吸没有显著影响(P>0.05),单独刈割刺激异养呼吸增加32.54% (P<0.05);(2) 增温和刈割之间的交互作用对土壤呼吸和异养呼吸没有显著影响(P>0.05),但是对自养呼吸的影响是显著的(P<0.05),土壤呼吸和异养呼吸的季节效应显著(P<0.05);(3)土壤呼吸及其组分与土壤温度均成显著指数关系,与土壤湿度呈显著的正相关关系(P<0.05),处理影响它们的响应敏感性。本研究表明青藏高原东缘高寒草甸土壤碳排放与气候变暖存在正反馈。  相似文献   

13.
We investigated the relationships of net ecosystem carbon exchange (NEE), soil temperature, and moisture with soil respiration rate and its components at a grassland ecosystem. Stable carbon isotopes were used to separate soil respiration into autotrophic and heterotrophic components within an eddy covariance footprint during the 2008 and 2009 growing seasons. After correction for self‐correlation, rates of soil respiration and its autotrophic and heterotrophic components for both years were found to be strongly influenced by variations in daytime NEE – the amount of C retained in the ecosystem during the daytime, as derived from NEE measurements when photosynthetically active radiation was above 0 μmol m?2 s?1. The time scale for correlation of variations in daytime NEE with fluctuations in respiration was longer for heterotrophic respiration (36–42 days) than for autotrophic respiration (4–6 days). In addition to daytime NEE, autotrophic respiration was also sensitive to soil moisture but not soil temperature. In contrast, heterotrophic respiration from soils was sensitive to changes in soil temperature, soil moisture, and daytime NEE. Our results show that – as for forests – plant activity is an important driver of both components of soil respiration in this tallgrass prairie grassland ecosystem. Heterotrophic respiration had a slower coupling with plant activity than did autotrophic respiration. Our findings suggest that the frequently observed variations in the sensitivity of soil respiration to temperature or moisture may stem from variations in the proportions of autotrophic and heterotrophic components of soil respiration. Rates of photosynthesis at seasonal time scales should also be considered as a driver of both autotrophic and heterotrophic soil respiration for ecosystem flux modeling.  相似文献   

14.
Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.  相似文献   

15.
Tree photosynthesis modulates soil respiration on a diurnal time scale   总被引:21,自引:0,他引:21  
To estimate how tree photosynthesis modulates soil respiration, we simultaneously and continuously measured soil respiration and canopy photosynthesis over an oak‐grass savanna during the summer, when the annual grass between trees was dead. Soil respiration measured under a tree crown reflected the sum of rhizosphere respiration and heterotrophic respiration; soil respiration measured in an open area represented heterotrophic respiration. Soil respiration was measured using solid‐state CO2 sensors buried in soils and the flux‐gradient method. Canopy photosynthesis was obtained from overstory and understory flux measurements using the eddy covariance method. We found that the diurnal pattern of soil respiration in the open was driven by soil temperature, while soil respiration under the tree was decoupled with soil temperature. Although soil moisture controlled the seasonal pattern of soil respiration, it did not influence the diurnal pattern of soil respiration. Soil respiration under the tree controlled by the root component was strongly correlated with tree photosynthesis, but with a time lag of 7–12 h. These results indicate that photosynthesis drives soil respiration in addition to soil temperature and moisture.  相似文献   

16.
Aims Root and heterotrophic respiration may respond differently to environmental variability, but little evidence is available from large-scale observations. Here we aimed to examine variations of root and heterotrophic respiration across broad geographic, climatic, soil and biotic gradients.Methods We conducted a synthesis of 59 field measurements on root and heterotrophic respiration across China's forests.Important findings Root and heterotrophic respiration varied differently with forest types, of which evergreen broadleaf forest was significantly different from those in other forest types on heterotrophic respiration but without statistically significant differences on root respiration. The results also indicated that root and heterotrophic respiration exhibited similar trends along gradients of precipitation, soil organic carbon and satellite-indicated vegetation growth. However, they exhibited different relationships with temperature: root respiration exhibited bimodal patterns along the temperature gradient, while heterotrophic respiration increased monotonically with temperature. Moreover, they showed different relationships with MOD17 GPP, with increasing trend observed for root respiration whereas insignificant change for heterotrophic respiration. In addition, root and heterotrophic respiration exhibited different changes along the age sequence, with insignificant change for root respiration and decreasing trend for heterotrophic respiration. Overall, these results suggest that root and heterotrophic respiration may respond differently to environmental variability. Our findings could advance our understanding on the different environmental controls of root and heterotrophic respiration and also improve our ability to predict soil CO2 flux under a changing environment.  相似文献   

17.
杨文佳  李永夫  姜培坤  周国模  刘娟   《生态学杂志》2015,26(10):2937-2945
利用Li-8100土壤碳通量测量系统,研究了2013年4月—2014年3月浙江临安市毛竹人工林土壤呼吸、异养呼吸和自养呼吸速率的动态变化规律.结果表明:毛竹人工林土壤总呼吸速率、异养呼吸速率和自养呼吸速率均呈现出明显的季节变化特征,最高值出现在7月,最低值出现在1月,年平均值分别为2.93、1.92和1.01 μmol CO2·m-2·s-1.毛竹林土壤总呼吸、异养呼吸和自养呼吸年累积CO2排放量分别为37.25、24.61和12.64 t CO2·hm-2·a-1.土壤呼吸各组分均与土壤5 cm温度呈显著指数相关,土壤总呼吸、异养呼吸和自养呼吸的温度敏感系数Q10值分别为2.05、1.95和2.34.土壤总呼吸速率、异养呼吸速率与土壤水溶性有机碳(WSOC)含量均呈显著相关,而自养呼吸与WSOC无显著相关性;土壤呼吸各组分与土壤含水〖JP2〗量以及微生物生物量碳均无显著相关性.土壤温度是影响毛竹人工林土壤呼吸及其组分季节变化的主要驱动因子,土壤WSOC含量是影响土壤总呼吸和异养呼吸的重要环境因子.  相似文献   

18.
米槠和杉木人工林土壤呼吸及其组分分析   总被引:4,自引:0,他引:4       下载免费PDF全文
区分森林土壤呼吸组分是了解生态系统碳循环的重要环节。该文以福建省三明市格氏栲自然保护区米槠(Castanopsis carlesii)人工林和邻近的杉木(Cunninghamia lanceolata)人工林为研究对象, 于2012年8月至2013年7月, 采用LI-8100开路式土壤碳通量系统, 通过挖壕沟方法, 测定了土壤呼吸及异养呼吸的速率, 同时测定了5 cm深处的土壤温度和0-12 cm深处的土壤含水量。利用指数模型和双因素模型, 分析土壤呼吸及其组分与土壤温度和土壤含水量的关系, 同时计算了土壤呼吸各组分在土壤呼吸中所占的比例, 并分析了不同森林类型对土壤呼吸及其组分的影响。结果表明: 米槠人工林和杉木人工林土壤呼吸及其组分的季节变化显著, 均呈单峰型曲线, 与5 cm深处的土壤温度呈极显著正相关关系。土壤温度可以分别解释米槠人工林土壤呼吸、自养呼吸和异养呼吸变化的70.3%、73.4%和58.2%, 可以解释杉木人工林土壤呼吸、自养呼吸和异养呼吸变化的77.9%、65.7%和79.2%。土壤呼吸及其组分与土壤含水量没有相关关系。米槠和杉木人工林自养呼吸的年通量分别为4.00和2.18 t C·hm-2·a-1, 占土壤呼吸年通量的32.5%和24.1%; 异养呼吸年通量分别为8.32和6.88 t C·hm-2·a-1, 分别占土壤呼吸年通量的67.5%和75.9%, 米槠人工林土壤呼吸及其组分的年通量都大于杉木人工林。  相似文献   

19.
The two components of soil respiration, autotrophic respiration (from roots, mycorrhizal hyphae and associated microbes) and heterotrophic respiration (from decomposers), was separated in a root trenching experiment in a Norway spruce forest. In June 2003, cylinders (29.7 cm diameter) were inserted to 50 cm soil depth and respiration was measured both outside (control) and inside the trenched areas. The potential problems associated with the trenching treatment, increased decomposition of roots and ectomycorrhizal mycelia and changed soil moisture conditions, were handled by empirical modelling. The model was calibrated with respiration, moisture and temperature data of 2004 from the trenched plots as a training set. We estimate that over the first 5 months after the trenching, 45% of respiration from the trenched plots was an artefact of the treatment. Of this, 29% was a water difference effect and 16% resulted from root and mycelia decomposition. Autotrophic and heterotrophic respiration contributed to about 50% each of total soil respiration in the control plots averaged over the two growing seasons. We show that the potential problems with the trenching, decomposing roots and mycelia and soil moisture effects, can be handled by a modelling approach, which is an alternative to the sequential root harvesting technique.  相似文献   

20.
干湿交替格局下黄土高原小麦田土壤呼吸的温湿度模型   总被引:5,自引:0,他引:5  
全球气候变化的直接后果是气温升高,同时还可能引起强降雨增多和干旱频发,形成干湿交替的格局.土壤呼吸在全球变化过程中发挥着重要作用.以黄土高原沟壑区小麦田土壤为研究对象,采用3个全自动多通量箱以及相应的气象监测系统,对土壤呼吸和环境因子全天候连续测定,利用已有的单因子模型、双因子模型对测定的土壤呼吸与气温和湿度的关系进行了拟合,通过优化,根据实际情况提出E-Q(exponential-quadratic)模型.结果表明:(1)干湿交替格局下,基于气温的单因子模型(指数模型,幂函数模型和线性模型)不适合模拟土壤呼吸;(2)基于土壤湿度的单因子模型中,二次曲线模型最适合模拟干湿交替格局下土壤呼吸的响应情况;(3)基于气温和土壤湿度的双因子模型中,E-Q模型SR=aebT(c+dW+fW2)g,既能反映土壤呼吸随气温的正向指数变化,又能表现土壤湿度对土壤呼吸的双向调节作用,解释了土壤呼吸73.05%的变化情况,比其他双因子模型和单因子模型更能有效描述干湿交替情况下土壤呼吸对气温和土壤湿度协同变化的响应特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号