首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sharif KA  Goldman ID 《BioTechniques》2000,28(5):926-8, 930, 932
Reported here is a new method that permits rapid (approximately 5 s) determinations of membrane transport phenomena in cells grown in monolayers at the base of 17-mm glass scintillation vials. The method is convenient, cost effective and requires no special apparatus. Initial uptake rates, steady-state and free substrate levels are demonstrated in ZR-75-1 breast cancer and Chinese hamster ovary cell lines using methotrexate, a model agent transported by the reduced folate carrier. The technique should be applicable to the study of the transport properties in a broad range of substrates and cells in monolayer culture.  相似文献   

2.
Structurally diverse anions (folate, 5-formyltetrahydrofolate, AMP, ADP, thiamine pyrophosphate, phosphate, sulfate, and chloride) that are competitive inhibitors of methotrexate influx in L1210 cells also enhance the efflux of methotrexate from these cells. The increase in efflux reaches a maximum of 2- to 4-fold depending upon the anion employed, and the anion concentrations required for half-maximal stimulation of efflux are similar to their Ki values for inhibition of methotrexate influx. A competitive inhibitor of methotrexate uptake (fluorescein-diaminopentane-methotrexate) that is not transported by this system, does not increase methotrexate efflux. These results suggest that the efflux of intracellular methotrexate is coupled to the concomitant uptake of an extracellular anion.  相似文献   

3.
Summary Interaction of positively (phosphatidylcholine/stearylamine 51) or negatively (phosphatidylcholine/stearic acid 51) charged liposomes with Ehrlich ascites tumor cells for 1–5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in theV max with no change in theK m in . These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.  相似文献   

4.
Li T  Tomimatsu T  Ito K  Horie T 《Life sciences》2003,73(20):2631-2639
The transport characteristics of fluorescein-methotrexate (F-MTX) in isolated brush border membrane vesicles (BBMVs) from rat small intestine were studied. F-MTX uptake in BBMVs was measured by a rapid filtration technique. Our results demonstrated that F-MTX uptake into vesicles was 1) significantly increased under the experimental conditions of an outwardly directed OH(-) gradient or an inwardly directed H(+)gradient, 2) sensitive to temperature, 3) increased with decreasing pH of the incubation buffer, 4) significantly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) at the early stage of the uptake, and 5) significantly inhibited by methotrexate (MTX). Thus, the transport of F-MTX in BBMVs was shown to be mediated in part by the reduced folate transporter (RFC) which was known to transport MTX through the epithelium of small intestine.  相似文献   

5.
We have isolated stable variants of the L1210 cell exhibiting increased transport inward of the folate analog, methotrexate. These variants show 3- to 14-fold increases in [3H]methotrexate influx compared to parental cells but are unaltered for [3H]methotrexate efflux. This increased influx in each variant is quantitatively reflected in corresponding elevations in intracellular exchangeable levels of drug at steady state, but there is no alteration in membrane potential. The increases in influx are associated with increased values for influx Vmax for a system normally transporting reduced folates and the same increase in the amount of a specific binding component at the cell surface. Otherwise, values for influx Km and specificity for various folate structures are unchanged. This alteration in [3H]methotrexate influx is biochemically and genetically stable, since it is expressed in isolated plasma membrane vesicles and is retained during growth in non-selective medium. Following addition of cycloheximide, the same rate of decay of this transport activity (t 1/2 = 126 +/- 24 to 137 +/- 26 min) was shown for parental and variant cells. From these results we conclude that turnover of this transport property occurs in these cells which is genetically regulated. Also, the elevated transport activity inward for this folate analog in these variant cells is probably the result of a genetic alteration up-regulating the rate of synthesis of the "putative" carrier protein itself. The absence of any effect on efflux of [3H]methotrexate in these variants in the face of evidence for increased synthesis of the carrier protein for the system mediating influx of this folate analog is construed as further evidence for the nonidentity of systems mediating each flux that we proposed on the basis of earlier kinetic studies.  相似文献   

6.
Routes which contribute to the transport of methotrexate across the plasma membrane of L1210 cells have been evaluated. A single high affinity transport system was found to be the only route for methotrexate uptake. This conclusion was derived from the observations that influx at high substrate concentrations (up to 50 microM) both reaches a single maximum value and can be inhibited by greater than 98% either by treatment of the cells with an active ester of methotrexate or by the direct addition of excess amounts of competitive inhibitors. Efflux, conversely, could be separated into three components. One of these routes was dependent upon extracellular anions and could be blocked by active ester treatment and, therefore, appeared to be the same transport system which mediates methotrexate influx. A second route was identified by its sensitivity to bromosulfophthalein, while a third component was insensitive to both active ester treatment and to bromosulfophthalein. When these efflux routes were quantitated in a buffered saline medium, the methotrexate influx carrier was found to account for the major portion (71%) of total efflux. The inhibitor-insensitive component contributed an additional 23%, while the remaining 6% was attributable to the bromosulfophthalein-sensitive route. The addition of glucose increased total efflux by 3-fold and caused a substantial change in the proportion of efflux that occurred via each of the three components. The major portion of efflux (46%) now occurred via the bromosulfophthalein-sensitive route, while the influx carrier contributed only 29% of the total. The inhibitor-insensitive route accounted for the remaining 25%. The opposite result was obtained with metabolic inhibitors which decreased total efflux but increased the contribution by the influx carrier to greater than 80%. The demonstration of multiple routes for methotrexate efflux and their differential sensitivities to alterations in energy metabolism thus provides a basis for explaining previously described asymmetries between the influx and efflux of methotrexate in mouse leukemia cells.  相似文献   

7.
This study reports the isolation and characterization of a variant of the human CCRF-CEM leukemia cell line that overproduces the carrier protein responsible for the uptake of reduced folates and the folate analogue methotrexate. The variant was obtained by adapting CCRF-CEM cells for prolonged times to stepwise decreasing concentrations of 5-formyltetrahydrofolate as the sole folate source in the cell culture medium. From cells that were grown on less than 1 nM 5-formyl-tetrahydrofolate, a variant (CEM-7A) was isolated exhibiting a 95-fold increased Vmax for [3H]methotrexate influx compared to parental CCRF-CEM cells. The values for influx Km, efflux t0.5, and Ki for inhibition by other folate (analogue) compounds were unchanged. Affinity labeling of the carrier with an N-hydroxysuccinimide ester of [3H]methotrexate demonstrate an approximately 30-fold increased incorporation of [3H] methotrexate in CEM-7A cells. This suggests that the up-regulation of [3H]methotrexate influx is not only due to an increased amount of carrier protein, but also to an increased rate of carrier translocation or an improved cooperativity between carrier protein molecules. Incubation for 1 h at 37 degrees C of CEM-7A cells with a concentration of 5-formyltetrahydrofolate or 5-methyltetrahydrofolate in the physiological range (25 nM) resulted in a 7-fold decline in [3H]methotrexate influx. This down-regulation during incubations with 5-formyltetrahydrofolate or 5-methyltetrahydrofolate could be prevented by either the addition of 10-25 nM of the lipophilic antifolate trimetrexate or by preincubating CEM-7A cells with 25 nM methotrexate. The down-regulatory effect was specifically induced by reduced folates since incubation of CEM-7A cells with 25 nM of either methotrexate, 10-ethyl-10-deazaaminopterin, aminopterin, or folic acid, or a mixture of purines and thymidine, had no effect on [3H]methotrexate influx. Similarly, these down-regulatory effects on [3H]methotrexate transport by 5-formyltetrahydrofolate, and its reversal by trimetrexate or methotrexate, were also observed, though to a lower extent, for parental CCRF-CEM cells grown in folate-depleted medium rather than in standard medium containing high folate concentrations. These results indicate that mediation of reduced folate/methotrexate transport can occur at reduced folate concentrations in the physiological range, and suggest that the intracellular folate content may be a critical determinant in the regulation of methotrexate transport.  相似文献   

8.
The zero-trans uptake of purines and pyrimidines was measured in suspensions of Novikoff rat hepatoma, mouse L, P388 mouse leukemia, and Chinese hamster ovary cells by a rapid kinetic technique which allows the determination of uptake time points in intervals as short as 1.5 s. Kinetic parameters for purine/pyrimidine transport were determined by measuring substrate influx into cells in which substrate conversion to nucleotides was negligible either due to lack of the appropriate enzymes or to depletion of the cells of ATP (5'-phosphoribosylpyrophosphate), and by computer fitting exact, integrated rate equations derived for various carrier-mediated transport models directly to zero-trans influx data. The results indicate that different carriers function in the transport of hypoxanthine/guanine, adenine, and uracil with substrate:carrier association constants (K) at 24 degrees C of 300 to 400 muM, 2 to 3 mM, and about 14 mM, respectively, for Novikoff cells. K and Vmax for hypoxanthine transport by L and P388 cells are similar to those for Novikoff cells, but the transport capacity of Chinese hamster ovary cells is much lower and K = 1500 muM. All transport systems are completely symmetrical. Hypoxanthine transport is so rapid that an intracellular concentration of free hypoxanthine (90%) close to that in the medium is attained within 20 to 50 s of incubation at 24 degrees C, at least at extracellular concentrations below K. In cells in which conversion to nucleotides is not blocked free hypoxanthine accumulates intracellularly to steady state levels with equal rapidity and thereafter the rate of hypoxanthine uptake into total cell material is strictly a function of the rate of phosphoribosylation. The low Km systems for hypoxanthine (1 to 9 muM) and adenine (0.2 to 40 muM) uptake detected previously in many types of cells reflect the substrate saturation of the respective phosphoribosyltransferases rather than of the transport system.  相似文献   

9.
The kinetics of methotrexate transport in L1210 cells are described. Data derived from the measurements of initial influx, the complete time-course of uptake, intracellular steady-state level and unidirectional efflux were found to be consistent with a simple empirical equation containing three constants. Properties of the system include the following: (1) saturability of initial influx; (2) approach to steady state during uptake is expoential; (3) the half-time for drug uptake is independent of external concentration and qual to half-time for efflux; and (4) transport is concentrative at low external concentrations, whereas the reverse is true at high external concentrations. These observations are incorporated into a kinetic model which quantitatively accounts for the data on the basis of the hypothesis that influx and efflux take place via different carriers.  相似文献   

10.
The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.  相似文献   

11.
Methotrexate transport in L1210 cells is mediated by a carrier protein that can bind organic and inorganic phosphate compounds in addition to the various folate substrates. The photoaffinity labeling agent, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), also interactis (Ki = 140 microM) with the receptor site for this transport system, and upon irradiation with ultraviolet light, irreversibly inhibits methotrexate uptake. Protection against this inactivation is afforded by either a substrate (methotrexate) or a competitive inhibitor (inorganic phosphate). The light-induced reaction proceeds rapidly (t1/2 = 2 min at 23 degrees C under the conditions described) and produces half-maximal reduction in the transport rate when the 8-azido-AMP concentration is 65 microM. complete photoinactivation of methotrexate transport could not be obtained from a single exposure to 8-azido-AMP (up to 1.0 mM), but it could be achieved by the repetitive illumination of cells in a fresh medium. The phosphate and folate/adenine transport systems of L1210 cells are not affected by irradiation in the presence of 8-azido-AMP.  相似文献   

12.
Summary Interaction of positively charged liposomes with Ehrlich ascites tumor cells increases the bidirectional transmembrane fluxes of the anionic folic acid analog, methotrexate. Negative liposomes reduce methotrexate influx. Stimulation of methotrexate influx by positively charged liposomes is time and concentration dependent, requiring at least a 5-min incubation with 2.5mm phosphatidylcholine containing 20% stearylamine for maximum effect. Stimulation is not appreciably reversed by washing the cells. Similar increases are observed for influx and efflux so that there is no change in the steady-state methotrexate electrochemical-potential difference across the cell membrane. The increase in influx appears to be a stimulation of the carrier-mediated transport process for methotrexate since both control and stimulated influx are abolished by the competitive inhibitor, 5-formyltetrahydrofolate or the sulfhydryl group inhibitor,p-chloromercuriphenylsulfonic acid and the Q10 of the system remains unchanged. Influx of 5-methyltetrahydrofolate, which shares the same transport carrier as methotrexate, is also stimulated. However, the transport of folic acid, which is structurally similar to methotrexate but does not utilize the carrier, is unaffected. The kinetic change induced by positively charged liposomes is an increase in theV ma in , while theK t in remains unchanged. Trans-stimulation of methotrexate influx by 5-formyltetrahydrofolate occurs to the same extent in the presence or absence of positively charged liposomes. The liposomes have no apparent effect on the intracellular water, the extracellular space, or the chloride distribution ratio. The data suggest that interaction of positively charged liposomes with Ehrlich ascites tumor cells accelerates the rate of transposition of the membrane carrier system for methotrexate, altering the kinetics of transport without a change in transport thermodynamics.  相似文献   

13.
The uptake of 8-C14-adenine in N. crassa strain Lindegren (+) was studied. The ability of N. crassa cells to uptake adenine from the medium reaches maximum at the very beginning of the logarithmic stage of growth. Adenine enters the mycelium against the concentration gradient. The uptake of adenine is maximal at 25-30 degrees C, pH 4,6-4,8, and adenine concentration in the medium about 2-15X10(-6) M. The entry of adenine into the cells follows normal Michaelis-Menten kinetics, the apparent Km=0.83+/-0.02 micron. The uptake is inhibited at higher concentrations (10(-3)-10(-4) M) of adenine. 2,6-Diaminopurine, hypoxanthine, guanine, 8-azaadenine and 8-azaguanine inhibit the transport of adenine into the cell. Xanthine and cytosine do not affect the uptake of adenine. Adenine taken up into the cell is rapidly metabolized to AMP, ADP and ATP.  相似文献   

14.
A unique interaction between the folate analog, methotrexate (4-amino-4-deoxy-10-methylpteroylglutamic acid), and the naturally occurring folates in L1210 leukemia and Ehrlich ascites tumor cells provides a useful model for the study of heteroexchange diffusion. The presence of intracellular binding sites with a high affinity for methotrexate but a low affinity for folic acid and its tetrahydrofolate derivatives permit the measurement of true unidirectional influx rates for methotrexate and assure that the trans-stimulation of methotrexate uptake by the intracellular presence of the other folates is due solely to a primary augmentation of this carrier influx mechanism. Further, since free methotrexate does not appear prior to saturation of the binding sites, the reaction between the folates and carrier at the inner cell membrane is undisturbed by methotrexate released from carrier as the complex enters the cell during heteroexchange, facilitating quantitation of the kinetic alterations which occur for methotrexate influx during trans-stimulation.  相似文献   

15.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

16.
The influx of 5'-deoxy-5'-methylthioadenosine (MeSAdo) into human HL-60 leukemia cells and erythrocytes was characterized in order to determine whether it is facilitated by the nonspecific nucleoside carrier system or by a separate transporter, as suggested by other reports. Initial velocities were measured at room temperature by means of inhibitor-stop and oil-stop assays. MeSAdo influx was strongly inhibited by Ado, dAdo, and nucleoside transport inhibitors including nitrobenzylthioinosine and dipyridamole. Ade was inhibitory only at concentrations in excess of 1 mM. Loss of nucleoside transport capacity during differentiation of HL-60 cells was accompanied by a corresponding decrease in MeSAdo influx rates. These results indicate that MeSAdo influx was mediated by the nonspecific nucleoside transport system. The kinetic data were consistent with a single saturable carrier and yielded Km values of 74 and 184 microM and Vmax values of 424 and 48 pmols/10(6) cells/min with HL-60 cells and erythrocytes, respectively, after correction for a substantial passive diffusion component, which accounted for over 50% of the influx of 1 mM MeSAdo. The passive diffusion of MeSAdo in the presence of a transport inhibitor was not rate-limiting for the salvage of 50 microM MeSAdo to methionine when HL-60 cells were cultured in methionine-deficient medium. The large contribution of passive diffusion to the influx of MeSAdo is consistent with its unusually high octanol/water partition ratio (5.7-fold greater than that of Ado).  相似文献   

17.
Summary Measurements of methotrexate transport in L1210 cells in the presence and absence ofd-glucose reveal that both influx and efflux are depressed in the absence ofd-glucose, whereas the steady-state accumulation of drug is enhanced. The reason for the increase in steady state is that the relative decline in efflux is greater than the decline in influx. Analysis of the concentration dependence of steady-state methotrexate accumulation ind-glucose-deprived cells indicates a linear relationship consistent with a one-carrier active transport model. Similar data in nondeprived cells is highly nonlinear and strongly supports the postulate that under physiological conditions influx and efflux of methotrexate are mediated by separate carrier systems. These results indicate that the efflux system, preferentially transporting methotrexate under normal conditions, cannot operate in the absence ofd-glucose, whereas the influx system is only partially inhibited under conditions of glucose deprivation.  相似文献   

18.
Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ~1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.  相似文献   

19.
The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0 degrees C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K](amb.) - 0.003 in which [K](amb.) refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories +/- 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.  相似文献   

20.
Initial and steady-state uptakes of serine and phenylalanine by human fibroblasts and human colon tumour cells were studied applying a double isotope dilution technique to perfused populations of cultivated cells retained on microcarrier beads. This new method permits the differentiation of the unidirectional transport parameters and can also distinguish between membrane-associated processes and independently intracellular events in isolated cells. High initial L-serine uptake values in colon adenocarcinoma cells became negative under steady-state conditions. To determine if the observed negative L-serine uptake was produced by the rapid efflux of intracellular L-[3H]serine, the cells were treated with methotrexate (MTX) (an inhibitor of cytosolic dihydrofolate reductase). The modified curve of L-[3H]serine uptake after MTX treatment suggests that, under these experimental conditions, net serine transport is non concentrative in colon tumour cells and could be modulated by the rate of intracellular serine metabolism; it also suggests that MTX does not directly affect serine transport in perfused human colon adenocarcinoma cells. Initial and steady-state uptakes of phenylalanine were high in both fibroblasts and tumour cells and were unaffected by MTX treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号