首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have analyzed the effect of N,N′-bis-(2,3-methylenedioxyphenyl)urea (2,3-MDPU) and N,N′-bis-(3,4-methylenedioxyphenyl)urea (3,4-MDPU), two symmetrically substituted diphenylurea derivatives with no auxin or cytokinin-like activity, on the rooting capacity of Pinus radiata stem cuttings. Results indicate that both diphenylurea derivatives enhance adventitious rooting in the presence of exogenous auxin (indole-3-butyric acid, IBA), even at low auxin concentration, in rooting-competent cuttings, but have no effect on the adventitious rooting of low or null competent-to-root cuttings. Histological analyses show that, in the simultaneous presence of MDPUs and low concentration of exogenous auxin, adventitious root formation is induced in the cell types that retain intrinsic competence to form adventitious roots in response to auxin. The time course of cellular events leading to root formation and the time of root emergence are closely similar to that observed in cuttings treated only with higher auxin concentration. In addition, the mRNA level of a P. radiata SCARECROW-LIKE gene, which is significantly induced in the presence of the optimal concentration (10 μM) of exogenous auxin needed for cuttings to root, is increased in the presence of MDPUs and low concentration of exogenous auxin (1 μM). The expression of a P. radiata SHORT-ROOT gene in rooting-competent cuttings during adventitious rooting is also affected by the presence of MDPUs when combined with auxin. As MDPUs do not affect the expression of either gene in the absence of exogenous auxin, but only in its presence, we suggest that MDPUs could interact, directly or indirectly, with the auxin-signalling pathways in rooting-competent cuttings during adventitious rooting.  相似文献   

2.
Adventitious root formation in stem cuttings of mung bean was enhanced by ethrel, which had an additive effect when employed simultaneously with indolebutyric acid (IBA). Abscisic acid (ABA) did not influence the number of roots per cutting whereas gibberellic acid (GA3) and kinetin were without effect on rooting at lower concentrations but were inhibitory at higher concentrations. Nevertheless, all three of these chemicals showed synergistic interactions with IBA and/or indol-3-ylacetic acid (IAA) and thereby significantly promoted root formation. A localised application of morphactin to the epicotyl of cuttings totally inhibited root production irrespective of which of the foregoing growth regulators were suppliedvia the hypocotyl. Morphactin application also prevented root formation in cuttings treated with vitamin D2. The various growth regulators employed had differing effects on growth of roots but there was no simple relationship between their effects on root formation and subsequent root growth.  相似文献   

3.
Adventitious rooting is essential for cutting propagation of pine wilt-resistant Pinus thunbergii. To examine a variety of adventitious rooting potentials among donor plants, cuttings were taken from 31 seedlings within a half-sib family. Rooting abilities of cuttings from each seedling ranged from 0 to 100%. When 11 ortets and 11 ramets (clonally propagated from each ortet) were used as donor plants, there was a positive correlation between rooting abilities of cuttings from ortets and ramets, suggesting that adventitious rooting is dependent on genetic factors in the donor plants. To promote adventitious rooting of cuttings by hormonal treatment, we examined the effect of soaking time in Oxyberon (19.7 mM indole-3-butyric acid (IBA) solution) on rooting. Ten minutes was the best soaking time for rooted cuttings to produce more adventitious roots without impairing normal growth. When cuttings were soaked in Ethrel diluent (69.2 μM ethephon) for 24 h before soaking in Oxyberon for 10 min, a significantly higher rooting ability was observed than those soaked in Oxyberon alone. Ethrel on its own barely affected rooting ability. The positive effect of the combinational treatment was confirmed in a similar experiment using authentic ethephon and IBA instead of Ethrel and Oxyberon. When cuttings were soaked in a mixture of ethephon and silver thiosulfate (STS), an ethylene action inhibitor, before IBA-soaking, the effect was partially diminished compared with combinational treatment without STS. These findings suggest that ethylene action caused by ethephon treatment promotes IBA-mediated adventitious rooting of P. thunbergii cuttings.  相似文献   

4.
The plant growth activity of vitamin D3 has been examined using well-established bioassays. Vitamin D3 was found to promote adventitious root formation in cuttings ofPopulus tremula and to promote the germination of lettuce (Lactuca sativa cv. Grand Rapids) seeds in the absence of light. No other effects were observed typical of plant growth substances.Presented at the Federation of European Societies of Plant Physiology IVth Congress, Strasbourg (1984).  相似文献   

5.
Summary Treatment with gibberellic acid (GA3) enhances the number of adventitious roots and the number and length of sprouted buds on stem cuttings of Ipomoea fistulosa. Such simultaneous promotion of both rooting and sprouting is in contrast to most earlier reports on the effect of GA3 on these processes.  相似文献   

6.
For perennial woody plants, softwood cutting is an efficient technique for larger scale propagation and adventitious rooting of cuttings is one of the most crucial steps. To evaluate the significance of juvenility on adventitious rooting, rooting rates was compared between softwood cuttings collected from apomictic seedlings (juvenile), in vitro cultured plants (rejuvenated), suckers (juvenile like) and canopy shoots (adult) of reproductively mature trees in Malus xiaojinensis. After pre-treatment with indole-3-butytric acid (IBA) (3,000 mg L?1) + H2O2 (50 mM), rooting rates in cutting from juvenile, juvenile like and rejuvenated donor plants were significantly higher (>90 %) than that from adult trees. The effects of IBA on adventitious rooting were enhanced significantly by exogenous H2O2. After 15 passages of in vitro subculture, the micro-shoots from adult phase explants were rejuvenated successfully, marked by the elevated expression of miR156 in the leaflets of the micro-shoots. But the rooting ability of rejuvenated micro-shoots was recovered delayed at the 18th or 21st passage of subculture. During the process of rejuvenation, the leaf indole-3-acetic acid contents and the expressions of rooting related genes CKI1, ARRO-1, ARF7 and ARF19 increased significantly. In contrary, the leaf abscisic acid contents decreased. A lack of juvenility is the most important limiting factor governing adventitious rooting of softwood cuttings in apple rootstocks.  相似文献   

7.
Uridine strongly stimulated adventitious root formation in stem cuttings of sunflower (Helianthus annuus L.), mung bean (Vigna radiata L.) and common bean (Phaseolus vulgaris L.). A dose response curve of uridine induced rooting showed that the optimum concentration of uridine was 0.1 µM. At all concentrations employed, uridine had no significant effect on root elongation. The rooting response of stem cuttings to the optimal concentration of indole-3-butyric acid (10 µM) in combination with 0.1 µM uridine did not significantly differ from their response to either of these compounds when applied alone. However, the rooting response of the cuttings to sub-optimal IBA (0.01 µM) was significantly stimulated by uridine. These findings suggested that uridine may have stimulated rooting by increasing the sensitivity of the rooting tissue to auxin.  相似文献   

8.
Indolyl-3-butyric acid and vitamin D3 enhance adventitious root formation in green cuttings of Populus tremula L. A significant synergistic effect is observed between these two substances. The number of roots formed on application of the individual substances and on simultaneous application depends on the growth substance concentration, the timing of application, the age of the cuttings and the number of leaves. Of the vitamin D3 animal metabolites tested, only 1,25-dihydroxyvitamin D3 markedly promoted adventitious rooting, and this to a lesser extent than vitamin D3 itself. The 3-O-glucopyranosides of vitamin D3 and the vitamin D3 animal metabolites, promoted rooting to the same extent as the parent compounds.  相似文献   

9.
The role of leaf in regulation of root and shoot growths in single node softwood cuttings of grape (Vitis vinifera) was characterised. Leafy cuttings showed early rooting, vigorous root growth and subsequent shoot development. Defoliation at planting induced early sprouting, but adversely affected rooting and decreased the survival of cuttings irrespective of pre‐planting treatment with 100 μM indole 3‐acetic acid (IAA). Treatment with IAA did not affect the percent rooting of leafy cuttings but increased root and shoot growth. Leaf weight (wt) and leaf area of the cuttings showed a highly significant correlation to root wt of the new plant at 4 wk after planting, while cutting stem + petiole wt was either not or less significantly correlated to root and shoot weights of the subsequent plant. The greater the area or wt of leaf, the better the root and shoot growths, implying that leaf contributed to adventitious root growth. However, retaining the leaf for just 2 days was enough to stimulate rooting in more than 80% of the cuttings, suggesting that leaf tissue could also induce root formation. Root growth increased with the period of leaf retention but leaf removal before 3 wk triggered sprouting leading to high mortality in rooted cuttings. Bringing the leaf closer to the rooting zone by preparing leaf at base (LAB) cuttings delayed rooting and sprouting compared with the standard leaf at top (LAT) cuttings. An inhibitory effect on rooting and sprouting by the exposed upper internode region in LAB cuttings is suggested.  相似文献   

10.
王书胜  张雅慧  邹芹  单文  李晓花  张乐华 《广西植物》2016,36(12):1468-1475
为探明有鳞大花亚组杜鹃扦插生根的最佳IBA浓度和扦插时间,该研究以江西杜鹃、百合花杜鹃为材料,分别采用腐叶土+河沙(1:1)、泥炭+珍珠岩+蛭石(3:1:1)基质,开展了4个IBA浓度和4个扦插时间的生根试验.结果表明:IBA浓度对除老叶留存数外的所有指标有显著影响,其中100 mg·L-1 IBA处理生根率、新梢长最大,腐烂率最低,其它指标也表现良好,为最佳生根浓度;50 mg·L-1 IBA处理根幅、新梢率最大,但不定根数最少,效果其次;200 mg·L-1 IBA处理促进根系生长,但生根率较低、特别是显著抑制新梢发育;对照处理生根效果最差.扦插时间对所有生根指标均有显著影响,早春(04-18)木质化硬枝扦插除老叶留存数较差外,其它指标均表现极佳,为最适扦插时间;秋季(10-19)半木质-木质化过渡枝扦插效果其次;夏季(06-21)嫩枝及(08-16)半木质化枝生根效果极差,不宜进行扦插育苗.物种、基质对生根指标也有显著影响,百合花杜鹃扦插生根能力强于江西杜鹃,泥炭+珍珠岩+蛭石(3:1:1)基质生根效果优于腐叶土+河沙(1:1).该研究结果首次发现早春新梢萌发前采用木质化硬枝扦插可以显著提高两种杜鹃的生根效果,为该亚组杜鹃的扦插育苗提供了科学依据.  相似文献   

11.
为探讨NAA对艾纳香(Blumea balsamifera)扦插生根的影响,4 a生艾纳香健康枝条用500 mg/L NAA处理,对生根过程中的生理生化特征进行了研究.结果表明,艾纳香扦插生根率与内源IAA、GA含量和IAA/ABA呈正相关,而与ABA含量呈负相关.NAA处理能提高插穗的IAA含量,降低ABA含量,有助...  相似文献   

12.
A positive correlation between the length of the basis and the ability of the cuttings to form adventitious roots was observed in pea cuttings. Plants with a different basis length (the third internode) were obtained in different ways: Regulation by the level of irradiance, dark treatment or gibberellic acid. The length of the basis was also regulated by excision of the cuttings at different places on the stock plants. With increasing basis length an increase was found in the number of roots subsequently formed. The results were similar in cuttings from plants grown at different levels of irradiance or from dark treated plants. Optimal rooting was obtained by cutting the plants just above the second scale leaf. Cuttings from plants treated with 10?3M GA3 showed the same correlation between the length of the third internode and root formation as found in the other experiments, but the number of roots were at a lower level.  相似文献   

13.
Therooting responses of cuttings of difficult-to-root lilac (Syringavulgaris) and easy-to-root forsythia(Forsythia×intermedia)were compared. The rooting ability of lilac cuttings declined over the growingseason (May–June). There was also a decline in the initial concentrationof free IAA at the base of the cuttings, but there was not a tight relationshipbetween basal IAA concentration and rooting ability. Polar auxin transportability was measured in lilac and forsythia during the period of maximum growthby [3H]IAA application to stem internodal tissue. Transport abilitydeclined in lilac over this time period, particularly in terms of transportintensity and percentage of [3H]IAA transported. In contrast thechanges in polar auxin transport ability in forsythia were less marked. Thisdifference between species was maintained in winter hardwood cuttings, withforsythia tissue showing greater polar auxin transport ability than lilac. Theimportance of polar auxin transport for adventitious rooting was demonstratedinboth lilac and forsythia softwood cuttings by use of the polar transportinhibitor 2,3,5-triiodobenzoic acid (TIBA). Overall the results indicate thatdifferences in polar auxin transport ability between lilac and forsythiacontribute to differences in rooting ability.  相似文献   

14.
小果核果茶为山茶科石笔木属常绿乔木,树形美观,叶泽光亮,洁白亮丽的花朵和茂密的果实具有较高的观赏价值;而且其种子含油量高,是一种具有潜在开发价值的新型生物能源植物。该研究采用4因素3水平的正交设计,分析了激素种类、处理浓度、浸泡时间和扦插基质对小果核果茶扦插生根的影响,并以生根率、生根数和平均根长为扦插生根效果的评价指标,构建生根效果指数,总体评价小果核果茶的生根效果。结果表明:对生根效果指数影响最大的是扦插基质,激素种类次之,影响最小的是处理时间。其中,扦插基质对生根效果指数的影响达到显著水平(P0.05);当激素种类为NAA、处理浓度为500mg·L~(-1)、处理时间为12 h、扦插基质为泥炭土时,小果核果茶扦插的生根效果最好。该研究结果为小果核果茶的栽培生产、育种以及资源开发和利用提供了科学依据。  相似文献   

15.
We have examined the effect of exogenous gibberellin A3(GA3) on adventitious rooting of Prunus avium(cherry) cultivars Stella, F12/1 and Charger. We show that GA3pre-treatment of P. avium stock plants causes an increasein shoot growth rate and also improves the rooting of cuttings subsequentlytaken from the treated plants. Approximately 37% of cuttings from controlshootsrooted, whereas the percentage rooting could be increased to 80% or more withGA3 pre-treatment. The number of roots per rooted cutting was alsoincreased by GA3 pre-treatment. The stimulation of adventitiousrooting could be partially explained by the increase in shoot growth rate.Cultivar Charger responded better than the other cultivars to the lowest levelof GA3 treatment. In vitro cultures of cultivarCharger were also treated with GA3. However, the stimulation ofadventitious rooting was less marked than in the GA3-treated stockplants: percentage rooting increased from 70% to 85%. The results are discussedin the context of 'rejuvenation' effects of GA3.  相似文献   

16.
沙生柽柳扦插生根过程插穗相关理化特征分析   总被引:1,自引:0,他引:1  
选取沙生柽柳半木质化枝条进行苗床扦插,通过实验测定插穗生根过程中内源激素(IAA、GA3、ZR、ABA)含量、可溶性营养物质(糖、蛋白质)含量及相关氧化酶(PPO、POD、SOD、IAAO)活性的动态变化特征,探讨沙生柽柳插穗扦插生根机理。结果表明:(1)沙生柽柳插穗内源激素含量随生根进程而发生变化,其中,IAA含量在扦插35d最大,并出现较大的波动变化;ZR含量在扦插55d前后变化明显,呈现低水平向高水平转化趋势;ABA、GA3含量依次呈先升高后降低再升高的变化过程,并在扦插15d和55d(80d)呈现变化的峰值和谷值。(2)沙生柽柳扦插生根与相关氧化酶活性密切相关,其中,POD、IAAO活性在插穗扦插35d后长时间保持较高水平,直至插穗生根后POD活性明显降低,IAAO活性有所增加;PPO、SOD活性则在插穗扦插15d保持较高活性,且PPO活性的变化均匀,SOD活性的高低交替变化明显。(3)在沙生柽柳扦插生根期间,插穗可溶性糖含量呈现生根前消耗减少与生根后积累增加两大变化过程,可溶性蛋白质含量表现为扦插后逐步积累增加的变化趋势。研究表明,高水平的IAA、ZR和低水平的GA3、ABA共同调控着沙生柽柳插穗生根;IAA能够通过促进插穗POD、PPO、IAAO活性变化来影响生根,较高的POD、IAAO活性可调节插穗IAA水平,高水平的PPO活性则催化插穗IAA-酚酸复合物的形成,进而诱导插穗生根。  相似文献   

17.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

18.
外源激素处理对三峡消落带落羽杉扦插生根的影响   总被引:2,自引:0,他引:2  
为优选落羽杉大龄母树插穗的扦插繁殖技术,以期培育大量的落羽杉良种壮苗满足三峡消落带植被修复的需要,采用正交试验设计,探究不同外源激素、浓度以及处理时间对三峡消落带落羽杉大龄母树插穗扦插生根的影响,运用隶属函数法对各处理生根情况进行综合评价。结果表明:(1)落羽杉插穗皮部和愈伤组织处均有不定根伸出,两处不定根数量分别占不定根总数的63.9%和36.1%;(2)4种外源激素中,吲哚丁酸(IBA)+萘乙酸(NAA)(等质量比)和IBA处理的插穗生根效果最好,NAA处理次之,生根粉(ABT)处理效果最差;(3)5种浓度(50 mg/L、100 mg/L、150 mg/L、200 mg/L和250 mg/L)之间的处理效果无显著差异;(4)4种处理时间(2 h、4 h、6 h和8 h)中,4 h处理的插穗生根效果最佳;(5)26个处理组合中,(IBA+NAA)×150 mg/L×4 h处理组合和NAA×250 mg/L×4 h处理组合的平均隶属函数值最高,分别为0.83和0.82,清水对照的平均隶属函数值最低,为0.05。研究初步验证了皮部生根是落羽杉大龄母树插穗的主要生根方式,筛选出三峡消落带原位适生落羽杉大龄母树插穗扦插的两种较佳处理组合为(IBA+NAA)×150 mg/L×4 h和NAA×250 mg/L×4 h。  相似文献   

19.
The role of ethylene in adventitious root formation and its involvement in auxin-induced rooting were investigated in cuttings ofVigna radiata (L.). Treatment with 30 M indole-3-acetic acid (IAA) for 24 h slightly inhibited rooting, whereas the same concentration of indole-3-butyric acid (IBA) significantly stimulated it. Ethylene derived from 1-aminocyclopropane-1-carboxylic acid (ACC) increased the number of adventitious roots but inhibited their emergence and elongation. Endogenous levels of ethylene, ACC, and malonyl-ACC (MACC) were initially higher in cuttings treated with IAA. This trend was quickly reversed, and cuttings, particularly hypocotyls, treated with IBA produced higher levels of ethylene and had more ACC and MACC during most of the rooting process. Aminoethoxyvinylglycine significantly inhibited rooting, but its inhibitory effect could not be reversed by ACC. The data suggest that the stimulating effect of IBA on rooting is closely associated with its induction of ACC and ethylene biosynthesis.  相似文献   

20.
It is well known that plant adventitious root formation can be stimulated by the application of nitric oxide (NO) and hydrogen peroxide (H2O2) exogenously but the mechanism of this physiological response is still unclear. Ground-cover chrysanthemum (Dendranthema morifolium ‘Beiguozhicun’) was used to understand the effects of NO and H2O2 on the rooting of plant cuttings and the associated biochemical changes of the rooting zone during the rhizogenesis process. The results showed that the effect of NO or H2O2 on rooting of ground-cover chrysanthemum cuttings was dose-dependent, with a maximal biological response at 50 μM of NO donor sodium nitroprusside (SNP) or 200 μM H2O2. There was a synergistic effect between NO and H2O2 on mediating rooting. NO and H2O2 treatments at the proper dosage might increase the activities of polyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) and the content of water-soluble carbohydrate (WSC) and total nitrogen, while decreasing the total polyphenol content of ground-cover chrysanthemum cuttings. In addition, rooting percentage was significantly correlated with these biochemical constituent activities or contents. Together, these results indicated that NO and H2O2 treatments enhanced adventitious root development synergistically and independently by stimulating the activities of PPO and IAAO enzymes and the content of carbohydrate and nitrogen and simultaneously repressing the production of polyphenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号