首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-content was determined in 23,557 daily food rations of the individuals fed individually or in sets of food or meals prepared in various institutions (3,298) in 1975-1987. Calcium deficit in daily food of girls and adult women has ranged from 50% to 6.2% in comparison with daily intakes recommended in Poland. Mean content of calcium per 1000 kcal ranged from 191.6 mg to 276.2 mg in 24 of the analysed meals. Calcium deficit amounted to 14-37.4% in 20 out of 24 analysed daily meals for boys and men. Calcium content in the remaining daily food rations was equal or even higher than the Polish daily intake recommendation. A mean calcium content per 1000 kcal ranged from 211.6 mg to 342.1 mg. These results suggest, that the daily calcium intake in several groups of the general population is to low, especially in women. Authors suggest, that such a low calcium intake in the diet increases the risk of osteoporosis, and intoxications with lead and cadmium salts, especially in children.  相似文献   

2.
Objective: The fat content of a diet has been shown to affect total energy intake, but controlled feeding trials have only compared very high (40% of total calories) fat diets with very low (20% of total calories) fat diets. This study was designed to measure accurately the voluntary food and energy intake over a range of typical intake for dietary fat. Methods and Procedures: Twenty‐two non‐obese subjects were studied for 4 days on each of three diets, which included core foods designed to contain 26, 34, and 40% fat, respectively of total calories and ad lib buffet foods of similar fat content. All diets were matched for determinants of energy density except dietary fat. Subjects consumed two meals/day in an inpatient unit and were provided the third meal and snack foods while on each diet. All food provided and not eaten was measured by research staff. Results: Voluntary energy intake increased significantly as dietary fat content increased (P = 0.008). On the 26% dietary fat treatment, subjects consumed 23.8% dietary fat (core and ad lib foods combined) and 2,748 ± 741 kcal/day (mean ± s.d.); at 34% dietary fat, subjects consumed 32.7% fat and 2,983 ± 886 kcal/day; and at 40% dietary fat subjects consumed 38.1% fat and 3,018 ± 963 kcal/day. Discussion: These results show that energy intake increases as dietary fat content increases across the usual range of dietary fat consumed in the United States. Even small reductions in dietary fat could help in lowering total energy intake and reducing weight gain in the population.  相似文献   

3.
The zinc nutritional status in south Koreans was established by evaluation of zinc, calcium and phytate intakes, the molar ratio of phytate: zinc, and the millimolar ratio of phytate × calcium: zinc. The intakes of iron and magnesium were also estimated. Sampling was designed so that it was representative of the national population. Two-day food records were used for the calculation of nutrient intakes, using food consumption data from the 1995 National Nutrition Survey (’95NNS) for South Korea. Daily intakes of zinc and calcium were estimated to be 10.1 mg/d and 426.5 mg/d, respectively, and those of iron and magnesium were 15.2 mg/d and 268.0 mg/d, respectively. The estimated daily phytate intake was 1676.6 mg/d. The ratio of phytate: zinc was 15.9 mol/d and that of phytate × calcium: zinc was 168.9 mmol/d. The ratio in millimoles per 4.2 MJ (1000 kcal) of phytate × calcium: zinc was 91.8. The major food groups for zinc intake were meat, poultry and their products (43%), and cereals and grain products (18%). Sixty-two percent of zinc was from animal food sources. Cereal and grain products supplied most of the phytate intake (46%) followed by seasonings, fruits, and legumes and their products. The major food source of phytate was rice (39%). The results of the study raise concern about the suboptimal zinc status in relation to the Western diet.  相似文献   

4.
Although many feeding protocols induce obesity, few use multiple foods to analyze diet selection within a single group of animals. To this end, we describe a protocol using time-limited access to a dessert that induces hyperphagia and body weight gain while allowing simple analysis of diet selection. Female retired breeder Sprague-Dawley rats were provided with ad libitum access to standard moist chow (1.67 kcal/g) and daily 8-h nocturnal access to either a sugar gel (SG; 0.31 kcal/g) or sugar fat whip (SFW; 7.35 kcal/g) for 15 days, and food intake and body weight were measured daily. Rats given SFW reduced moist chow intake but not enough to compensate for the large amount of calories consumed from SFW, and thus gained weight. We use this SFW overconsumption protocol to investigate the hypothesis that cannabinoid (CB)1 receptor antagonists reduce caloric intake by selectively decreasing consumption of palatable foods. In two experiments, female retired breeder Sprague-Dawley rats were injected with either Rimonabant (1 mg/kg ip) or vehicle (equal parts polyethylene glycol and saline, 1 ml/kg ip) for 7 days, or one of three doses of AM251 (0.3, 1.0, or 3.0 mg/kg ip), or vehicle for 15 days; food intake and body weight were measured daily. Both Rimonabant and AM251 decreased 24-h caloric intake, but the reduction was specific to a decrease in SFW consumption. This supports the hypothesis that these CB1 receptor antagonists impact feeding by modulating the perception of palatability.  相似文献   

5.
Mineral balance was studied by metabolic balance techniques in 13 healthy college females aged 21–23 yr. They were fed diet containing 1780 kcal, 2580 kcal, and 25 g protein in a 20-d experiment period. Both diets contained approximately 5.28 mg zinc, 216.85 mg calcium, and 364.3 mg magnesium. The diet consisted of habitually consumed foods. Blood, urine and fecal samples were collected for mineral analysis using atomic absorption spectrophotometry. Plasma mineral levels were not affected by the change in dietary energy intake. Fecal calcium and magnesium were significantly higher when subjects were fed the low calorie (1780 kcal) diet, whereas there was no significant difference in fecal zinc for the two levels of dietary energy. Urinary calcium and magnesium were also significantly higher when the diet provided 1780 kcal though, on the other hand, urinary zinc was significantly higher when the diet provided 2680 kcal (P<0.05). Urinary calcium and magnesium correlated negatively, whereas urinary zinc correlated positively, with the dietary energy intake (P o<0.05). Dietary energy intake has a significant effect on the mineral balance of the subjects.  相似文献   

6.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

7.
A large segment of the population is modifying its dietary cholesterol intake to achieve a healthier life-style. However, all individuals do not respond equally. We have investigated the effects that that two physiologically important polymorphisms in the apolipoprotein (apo) E and B genes have on the responses of plasma lipid, lipoprotein, and apolipoprotein levels to a high-cholesterol diet. Over a 6-wk period, individuals were prescribed two diets, one consisting of 300 mg dietary cholesterol/d for 3 wk and one consisting of 1,700 mg dietary cholesterol/d for 3 wk. Total cholesterol, low-density-lipoprotein cholesterol (LDL-C), and apo B levels were significantly increased on the high-cholesterol diet. Average total cholesterol (numbers in parentheses are SDs) went from 167.6 (23.4) mg/dl on the low-cholesterol diet to 190.8 (36.2) mg/dl on the high-cholesterol diet; LDL-C went from 99.9 (24.8) mg/dl to 119.2 (33.4) mg/dl, and apo B went from 74.9 (24.5) mg/dl to 86.8 (29.5) mg/dl. In 71 individuals, the frequencies of the apo epsilon 2, epsilon 3, and epsilon 4 alleles were .09, .84, and .07, respectively. The frequency of the longer, apo B signal peptide allele (5'beta SP27) was .68. Apo epsilon 2/3 individuals had significantly lower LDL-C levels than did epsilon 3/3 homozygotes, on both the low-cholesterol diet (LDL-C lower by 21 mg/dl) and the high-cholesterol diet (LDL-C lower by 27 mg/dl). Average triglyceride levels were significantly different among apo B signal peptide genotypes, with the 5'beta SP27/37 homozygotes having the lowest levels (70 mg/dl). When individuals were switched from the low-cholesterol diet to the high-cholesterol diet, in no case were the average responses in lipid levels significantly different among apo E or B genotypes. Therefore, these gene loci do not have a major effect on the response of lipid levels to increased dietary cholesterol.  相似文献   

8.
The lipid-lowering effect of ezetimibe in pure vegetarians   总被引:1,自引:0,他引:1  
Results of previous studies have shown that ezetimibe (10 mg/day) reduces LDL cholesterol in patients with mild hypercholesterolemia on a normal-cholesterol diet (dietary intake of 200-500 mg/day) by 16-22%. However, the LDL cholesterol-lowering effect of ezetimibe in subjects with an extremely low dietary cholesterol intake (vegetarians) has not been studied. We conducted a randomized, double-blind, placebo-controlled, two-phase crossover study in 18 healthy pure vegetarians to assess the effect of ezetimibe (10 mg/day) on plasma lipids, cholesterol absorption, and its synthesis. Treatment periods lasted 2 weeks each, with an intervening 2 week washout period. Fractional cholesterol absorption was determined using the continuous dual stable isotope feeding method. Mean dietary cholesterol intake in the pure vegetarians was extremely low and averaged 29.4 +/- 16.8 and 31.4 +/- 14.4 mg/day during the placebo and ezetimibe administration phases, respectively. Fractional cholesterol absorption during the placebo phase was 48.2 +/- 8.2% and was decreased by 58% during ezetimibe treatment to 20.2 +/- 6.2% (P < 0.001). This change in intestinal cholesterol absorption was followed by a significant reduction in LDL cholesterol of 17.3%. In individuals with extremely low dietary cholesterol intake, treatment with ezetimibe (10 mg/day) leads to a significant reduction of cholesterol absorption and a clinically relevant decrease of plasma LDL cholesterol, comparable to that of subjects with a normal dietary cholesterol intake. Thus, the lipid-lowering effect of ezetimibe is mediated mainly through a reduction of the absorption of endogenous (biliary) cholesterol.  相似文献   

9.
Many studies have reported magnesium's role in nutrition as a vital factor involved in bone health. However, not enough studies have evaluated magnesium (Mg) intakes in young women. In this study, we evaluated Mg intake in healthy adults and its relation with bone quality. A total of 484 healthy young women in their early 20s were enrolled into the study. Anthropometric measurements, dietary intake survey using 3-day dietary records, and the bone quality of the calcaneus using quantitative ultrasounds were obtained and analyzed. Average age, height, and weight of the subjects were respectively 20.20?years, 161.37?cm, and 54.09?kg, respectively. Also, the average broadband ultrasound attenuation, speed of sound (SOS), stiffness index (SI), and calcaneus T scores were 114.32?dB/MHz, 1,568.45?m/s, 95.23, and 0.36?g/cm(2), respectively. The subject's average intake of energy was 1,543.19?kcal, and the average Mg intake was 185.87?mg/day. Mg intake per 1,000?kcal of consumed energy in our subjects was 119.85?mg. Subjects consumed 63.11% of the recommended intake for Mg. Food groups consumed with high Mg content in our subjects included cereals (38.62?mg), vegetables (36.97?mg), milk (16.82?mg), legumes (16.72?mg), and fish (16.50?mg). The level of Mg intake per 1,000?kcal showed significant correlation to the SOS in the calcaneus (r?=?0.110, p?相似文献   

10.
With the worldwide epidemic of metabolic syndrome (MetS), the proportion of women that are overweight/obese and overfed during pregnancy has increased. The resulting abnormal uterine environment may have deleterious effects on fetal metabolic programming and lead to MetS in adulthood. A balanced/restricted diet and/or physical exercise often improve metabolic abnormalities in individuals with obesity and type 2 diabetes mellitus (T2D). We investigated whether reducing fat intake during the periconceptual/gestation/lactation period in mothers with high-fat diet (HFD)-induced obesity could be used to modify fetal/neonatal MetS programming positively, thereby preventing MetS. First generation (F1) C57BL/6J female mice with HFD-induced obesity and T2D were crossed with F1 males on control diet (CD). These F1 females were switched to a CD during the periconceptual/gestation/lactation period. At weaning, both male and female second generation (F2) mice were fed a HFD. Weight, caloric intake, lipid parameters, glucose, and insulin sensitivity were assessed. Sensitivity/resistance to the HFD differed significantly between generations and sexes. A similar proportion of the F1 and F2 males (80%) developed hyperphagia, obesity, and T2D. In contrast, a significantly higher proportion of the F2 females (43%) than of the previous F1 generation (17%) were resistant (P<0.01). Despite having free access to the HFD, these female mice were no longer hyperphagic and remained lean, with normal insulin sensitivity and glycemia but mild hypercholesterolemia and glucose intolerance, thus displaying a "satiety phenotype." This suggests that an appropriate dietary fatty acid profile and intake during the periconceptual/gestation/lactation period helps the female offspring to cope with deleterious intrauterine conditions.  相似文献   

11.
Although it has been known for more than 50 years that zinc (Zn) deficiency regularly and consistently causes anorexia in many animal species, the basic mechanism(s) that cause this phenomenon still remain(s) an enigma. The following studies describe feeding behavior in the early stages of zinc deficiency in the rat model. In one experiment, we used computerized feeding monitors that measured the intake of individual rats at 10-min intervals over 24-hr periods. Male rats were acclimated to the cages and fed a Zn-adequate egg-white-based diet, or a similar diet with <1.0 mg Zn/kg. Food intake was monitored for seven, consecutive 24-hr periods. The 24-hr food intake pattern of the Zn-deprived rats did not differ from the controls; they simply ate less food, mainly during the night hours, with no differences between groups during the day. Although Zn-deprived rats ate less food than controls, the percentage of total diet consumed during night and day did not differ between groups. In another experiment, we simultaneously offered male rats three isocaloric diets with different macronutrient compositions and with or without adequate Zn, and measured the amount of each diet selected during seven, 24-hr periods. The three diets contained either 57% protein from egg white, 30% fat from soybean oil, or 80% carbohydrate from a combination of starch, hydrolyzed starch, and sucrose. For the first four days on experiment, rats selected similar amounts of each diet. Then the Zn-deprived rats began to select only 50% as much of the protein diet as the controls. Similar results were obtained when the data were expressed on the basis of each macronutrient as a percentage of the total diet selected. Zn-deprived rats selected a diet that contained 8% protein, 73% carbohydrate, and 6% fat while the Zn-adequate rats selected 12% protein, 69% carbohydrate, and 6% fat. Fat intake was not affected by Zn-deprivation. The results confirm our previous findings, and are discussed in terms of Zn-deprivation blunting the pathways of signal transduction that involve the peptide hormones known to affect food intake regulation.  相似文献   

12.
13.
This study examined the relationship between previous dietary adherence during a low-calorie diet weight loss intervention and subsequent weight change during a 2-year follow-up for weight maintenance. One hundred and sixteen healthy, recently weight reduced (lost ~12 kg, BMI 22-25 kg/m2) premenopausal women were studied. Dietary adherence was assessed by doubly labeled water (DLW) and body composition change. Comparisons were made between the upper and lower tertiles for previous dietary adherence and subsequent weight change at 1- and 2-year follow-up. Percent weight regained was significantly lower (30.9 ± 6.7% vs. 66.7 ± 9.4%; P < 0.05) in the upper compared to the lower adherence tertile for previous weight loss dietary adherence (49.9 ± 8.8% vs. 96.8 ± 12.8% P < 0.05) at 1- and 2-year follow-up, respectively. This difference was partly explained by increases in daily activity-related energy expenditure (AEE) (+95 ± 45 kcal/day vs. -44 ± 42 kcal/day, P < 0.05) and lower daily energy intake (2,066 ± 71 kcal/day vs. 2,289 ± 62 kcal/day, P < 0.05) in the higher tertile for previous dietary adherence, compared to the lower. These findings suggest that higher adherence (i.e., higher tertile) to the previous low-calorie diet predicts lower weight regain over 2-year follow-up for weight maintenance, which is explained by lower energy intake and higher physical activity. Finally, how well an individual adheres to a low-calorie diet intervention during weight loss may be a useful tool for identifying individuals who are particularly vulnerable to subsequent weight regain.  相似文献   

14.
To determine mechanisms by which hydrogenated fat influences plasma lipid levels, 14 women (65;-71 yrs with LDL-C >/= 130 mg. dl(-)(1)) consumed, for 5-week periods each, a baseline (BL) diet (39% kcal fat, 164 mg chol. 1000 kcal(-)(1)) and reduced fat diets (30% kcal) where two-thirds of the fat was either soybean oil (SO), low trans squeeze (SQM), medium trans tub (TM), or high trans stick (SM) margarines, or butter (BT). Plasma lipid levels were analyzed at the end of each phase. Fractional synthesis rates (FSR) in pools/day (p. d(-)(1)) and absolute synthesis rates (ASR) in grams/day (g. d(-)(1)) of free cholesterol (FC) were measured using the deuterium incorporation methodology. Plasma total (P < 0.01) and low density lipoprotein (P < 0.05) cholesterol levels increased with increasing degree of hydrogenation or saturated fat intake. High density lipoprotein cholesterol levels (P < 0.05) were lowest on the SM diet when compared to the BT diet. Low trans SQM (0.081 +/- 0.019 p. d(-)(1)) and medium trans TM (0.086 +/- 0.029 p. d(-)(1)) diets elicited responses similar to the SO (0.078 +/- 0.024 p. d(-)(1)) diet, whereas high trans SM (0.053 +/- 0.029 p. d(-)(1)) diet mimicked the BT (0.062 +/- 0.017 p. d(-)(1)) and high fat BL (0.053 +/- 0.023 p. d(-)(1)) diet in its suppression (P < 0.05) of FSR-FC. ASR-FC, which is an approximation of the daily production of newly synthesized cholesterol, showed a trend similar to the FSR-FC data. These results indicate that reduced synthesis is not responsible for the higher plasma TC levels seen with consumption of the SM, BT, and BL diets, and suggest that another mechanism, possibly impairment of the catabolic pathway of cholesterol, is involved.  相似文献   

15.
Objective: To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents. Research Methods and Procedures: One‐year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat‐free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet‐induced EE (DIEE). Results: Sex‐ and Tanner stage–specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL0 = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph. Discussion: Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity.  相似文献   

16.

Background

Most physiological studies interested in alcohol-dependence examined ethanol as a pharmacological agent rather than a nutrient. We conducted two studies, which assessed the metabolic and endocrine factors involved in the regulation of alcohol and nutrient intake in alcohol-dependent (AD) subjects. We also examined the potential role of a disruption in energy balance in alcohol-dependence.

Methods and Results

In Study-1, quantitative dietetic interviews of eating and drinking habits were conducted with 97 AD subjects. The population was split around a median alcohol intake value of 12.5 kcal/kg/day. The results showed that the “low alcohol” drinking AD subjects had high Body Mass Index (BMI) and Fat Mass (FM) and alcohol intake was compensated for by a decrease in non-alcoholic intakes. “High alcohol” drinking AD subjects, on the other hand, had low BMI and FM and the total caloric intakes were largely above norms. In Study-2, 24 AD inpatients were submitted to dietetic interviews, calorimetry and blood samplings for the measurement of biomarkers of the regulation of metabolism and satiety, on day 2, 5 and 16 of abstinence. These patients were compared with 20 controls matched for age and gender. We observed in AD patients an increase in cortisol, leptin and PYY plasma levels and a decrease in ghrelin, which might explain the observed decrease in non-alcoholic intakes. However, alcoholic and non-alcoholic intakes correlated positively with basal metabolism and negatively with leptin and leptin/BMI.

Conclusion

For individuals consuming below12.5 kcal/kg/day of alcohol, alcohol intake is compensated for by a decrease in non-alcoholic nutrient intakes, probably due to changes in metabolic and satiety factors. For individuals consuming above 12.5 kcal/kg/day of alcohol, alcohol accelerates metabolism and decreases fat mass and leptin levels, and the total caloric intake largely exceeds norms. A dual model for regulation of energy intake in AD subjects is proposed.  相似文献   

17.
18.
Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet – weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction – were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.  相似文献   

19.
The effects of dietary energy density on the performance of growing, gestating and lactating C57BL/6J mice were determined in order to develop pelleted non-purified practical diets for use in all stages of the mouse life cycle. Experimental diets with 4 levels of energy at 24% crude protein (CP) were pelleted and the nutritional values were determined using adult rats. The nitrogen-corrected metabolizable energy (MEn) values ranged from 2.86 to 3.73 kcal/g and the digestive CP (DCP) contents ranged from 20.5 to 22.6% on a dry matter (DM) basis. Mice responded to decreased dietary energy by increasing their feed intake to maintain MEn intake levels, except for 1 week after weaning and during lactation periods. During these periods, mice fed lower energy diets could not consume as much MEn as those fed higher energy diets. The lowest energy diet, in comparison with the highest energy diet, resulted in approximately a 33% lower weaning weight of pups at 3 weeks of age, a 13.2 to 34.4% slower growth at 3 to 4 weeks of age, and a 9.3 day delay in the onset of vaginal opening in young females. Lower energy diets, however, did not affect the litter size or the birth weight of pups. The DCP intake usually increased with decreases in dietary energy but apparently this did not affect the performance of the mice. It was concluded that an optimal diet should have an MEn value of 3.73 kcal/g DM or more for both the one week post weaning growth period and during lactation, but a diet with an MEn value of 2.86 kcal/g DM was sufficient for growth after 4 weeks of age and during gestation.  相似文献   

20.
Objective: This study investigated which aspect of energy balance was responsible for the decrease in body fat content of rats fed a high‐calcium, high—dairy protein diet. Research Methods and Procedures: Male Wistar rats were fed a control diet (25% kcal fat, 14% kcal protein from casein, 0.4% by weight calcium) or high‐calcium diet (25% kcal fat, 7% kcal protein from nonfat dry milk, 7% kcal protein from casein, 2.4% calcium) for 85 days. Body weights, digestible energy intakes, energy expenditures, rectal temperatures, body composition, and serum glucose, insulin, free fatty acids, triglycerides, and 1, 25‐dihydroxyvitamin D were measured. Results: Rats fed high‐calcium diet gained significantly less weight than controls and had 29% less carcass fat. Gross energy intake was not significantly different between groups, but digestible energy was 90% of gross energy in the high‐calcium diet compared with 94% in the control diet because of increased fecal excretion of dietary lipid. The difference in digestible energy intake accounted for differences in carcass energy. Body temperatures and energy expenditures of the rats were not different. The high‐calcium diet reduced serum triglycerides by 23% and serum 1, 25‐dihydroxyvitamin D by 86%. Discussion: These results confirm that a high‐calcium diet decreases body weight and fat content due to a lower digestible energy intake caused by increased fecal lipid and a nonsignificant reduction in gross energy intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号