首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceramide functions as an important second messenger in apoptosis signaling pathways. In this report, we show that treatment of NT-2 neuronal precursor cells with hypoxia/reoxygenation (H/R) resulted in ceramide up-regulation. This elevation in ceramide was primarily due to the actions of acid sphingomyelinase and ceramide synthase LASS 5, demonstrating the action of the salvage pathway. Hypoxia/reoxygenation treatment led to Bax translocation from the cytoplasm to mitochondria and cytochrome c release from mitochondria. Down-regulation of either acid sphingomyelinase or LASS 5-attenuated ceramide accumulation and H/R-induced Bax translocation to mitochondria. Overall, we have demonstrated that ceramide up-regulation following H/R is pertinent to Bax activation to promote cell death.  相似文献   

2.
A growing body of evidence now suggests that programmed cell death (PCD) occurs via non-apoptotic mechanisms as well as by apoptosis. In contrast to apoptosis, however, the molecular mechanisms involved in the regulation of non-apoptotic PCD remain only poorly understood. Here we show that ceramide induces a non-apoptotic PCD with a necrotic-like morphology in human glioma cells. Characteristically, the cell death was not accompanied by loss of the mitochondrial transmembrane potential, cytosolic release of cytochrome c from mitochondria, or the activation of the caspase cascade. Consistent with these characteristics, this ceramide-induced cell death was inhibited neither by the overexpression of Bcl-xL nor by the pan-caspase inhibitor zVAD-fmk. However, strikingly, the ceramide-induced non-apoptotic cell death was inhibited by the activation of the Akt/protein kinase B pathway through the expression of a constitutively active version of Akt. The results for the first time indicate that the Akt kinase, known to play an essential role in survival factor-mediated inhibition of apoptotic cell death, is also involved in the regulation of non-apoptotic PCD.  相似文献   

3.
4.
C(6)-pyridinium (D-erythro-2-N-[6'-(1'-pyridinium)-hexanoyl]sphingosine bromide [LCL29]) is a cationic mitochondrion-targeting ceramide analog that promotes mitochondrial permeabilization and cancer cell death. In this study, we compared the biological effects of that compound with those of D-erythro-C(6)-ceramide, its non-mitochondrion-targeting analog. In MCF7 cells it was found that C(6)-pyridinium ceramide preferentially promoted autophagosome formation and retarded cell growth more extensively than its uncharged analog. This preferential inhibition of cell growth was also observed in breast epithelial cells and other breast cancer cells. In addition, this compound could promote Bax translocation to mitochondria. This redistribution of Bax in MCF7 cells could be blocked by the pan-caspase inhibitor zVAD-fmk but via a Bid-independent signaling pathway. Moreover, C(6)-pyridinium ceramide-induced translocation of Bax to mitochondria led to mitochondrial permeabilization and cell death. Overall, we show that mitochondrial targeting of C(6)-pyridinium ceramide significantly enhances cellular response to this compound.  相似文献   

5.
Bax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content. This finding was substantiated both in pro-lymphocytic FL5.12 cells and a yeast reporting system. Bcl-xL-dependent increase of mitochondrial Bax is counterbalanced by retrotranslocation, as we observed that Bcl-xLΔC, which is unable to promote Bax retrotranslocation, was more efficient than the full-length protein in stimulating Bax relocation to mitochondria. Interestingly, cells overexpressing Bcl-xL were more sensitive to apoptosis upon treatment with the BH3-mimetic ABT-737, suggesting that despite its role in Bax inhibition, Bcl-xL also primes mitochondria to permeabilization and cytochrome c release.  相似文献   

6.
Ceramide is a sphingolipid that is abundant in the plasma membrane of neuronal cells and is thought to have regulatory roles in cell differentiation and cell death. Ceramide is known to induce apoptosis in a variety of different cell types, whereas the physiological significance of gangliosides, another class of sphingolipids, in these processes is still unclear. We examined the mechanisms of ceramide-induced cell death using a human neuroblastoma cell line. Treatment of the human neuroblastoma cell line SH-SY5Y with ceramide induced dephosphorylation of the PKB/Akt kinase and subsequent mitochondrial dysfunction. In addition, ceramide-induced neuronal cell death was not completely blocked by inhibition of caspase activity. This incomplete inhibition appeared to be attributable to the translocation of apoptosis-inducing factor to the nucleus. Furthermore, overexpression of active PKB/Akt or Bcl-2 successfully blocked ceramide-induced neuronal cell death through inhibition of the translocation of apoptosis-inducing factor.  相似文献   

7.
Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.  相似文献   

8.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

9.
p21, a potent cyclin-dependent kinase inhibitor, has been known to induce cell cycle arrest in response to DNA-damaging agents. Although p21 has been reported to play an important role in the regulation of apoptosis, the postulated role for p21 in apoptosis is still controversial. Previously, we reported that p21 was induced in a p53-independent manner during ceramide-induced apoptosis in human hepatocarcinoma cell lines. In the present study, we investigated the precise role of p21 in ceramide-induced apoptosis in human hepatocarcinoma cells by using a tetracycline-inducible expression system. Overexpression of p21 by itself did not induce apoptosis in p53-deficient Hep3B cells. However, Hep3B/p21 cells were more sensitive to ceramide-induced apoptosis. In these cells, p21 overexpression did not result in G1 arrest. The expression level of Bax was increased in Hep3B/p21 cells treated with ceramide and its expression was more accelerated under the p21-overexpressed condition compared to that of the p21-repressed condition. Overexpression of Bax induced apoptosis in Hep3B cells. On the other hand, the levels of p21 and Bax protein were increased by ceramide in another hepatocarcinoma cell line, SK-Hep-1, while the Bcl-2 protein level was not changed. Overexpression of Bcl-2 not only suppressed apoptosis but also completely prevented induction of p21 and Bax caused by ceramide in SK-Hep-1 cells. Furthermore, overexpression of p21 antagonized the death-protective function of Bcl-2 and upregulated expression of Bax protein. These results suggest that p21 promotes ceramide-induced apoptosis by enhancing the expression of Bax, thereby modulating the molecular ratio of Bcl-2:Bax in human hepatocarcinoma cells.  相似文献   

10.
p73, an important developmental gene, shares a high sequence homology with p53 and induces both G(1) cell cycle arrest and apoptosis. However, the molecular mechanisms through which p73 induces apoptosis are unclear. We found that p73-induced apoptosis is mediated by PUMA (p53 up-regulated modulator of apoptosis) induction, which, in turn, causes Bax mitochondrial translocation and cytochrome c release. Overexpression of p73 isoforms promotes cell death and bax promoter transactivation in a time-dependent manner. However, the kinetics of apoptosis do not correlate with the increase of Bax protein levels. Instead, p73-induced mitochondrial translocation of Bax is kinetically compatible with the induction of cell death. p73 is localized in the nucleus and remains nuclear during the induction of cell death, indicating that the effect of p73 on Bax translocation is indirect. The ability of p73 to directly transactivate PUMA and the direct effect of PUMA on Bax conformation and mitochondrial relocalization suggest a molecular link between p73 and the mitochondrial apoptotic pathway. Our data therefore indicate that PUMA-mediated Bax mitochondrial translocation, rather than its direct transactivation, correlates with cell death. Finally, human DeltaNp73, an isoform lacking the amino-terminal transactivation domain, inhibits TAp73-induced as well as p53-induced apoptosis. The DeltaNp73 isoforms seem therefore to act as dominant negatives, repressing the PUMA/Bax system and, thus, finely tuning p73-induced apoptosis. Our findings demonstrate that p73 elicits apoptosis via the mitochondrial pathway using PUMA and Bax as mediators.  相似文献   

11.
Among the permeability pathways in the mitochondrial outer membrane (MOM), whose elucidation was pioneered by Kathleen Kinnally, there is one formed by the lipid, ceramide. Electron microscopic visualization shows that ceramide channels are large cylindrical structures of varying pore size, with a most frequent size of 10 nm in diameter, large enough to allow all soluble proteins to translocate between the cytosol and the mitochondrial intermembrane space. Similar results were obtained with electrophysiological measurements. Studies of the dynamics of the channels are consistent with a right cylinder. Ceramide channels form at mole fractions of ceramide that are found in the MOM early in the apoptotic process, before or at the time of protein release from mitochondria. That these channels are good candidates for the protein release pathway is supported by the fact that channel formation is inhibited by anti-apoptotic proteins and favored by Bax. Bcl-xL inhibits ceramide channel formation by binding to the apolar ceramide tails using its hydrophobic grove. Bax interaction with the polar regions of ceramide results in MOM permeabilization through synergy with ceramide. Evidence that ceramide channels actually function to favor apoptosis in vivo is supported by the expression of Bcl-xL containing point mutations in cells induced to undergo apoptosis. The Bcl-xL mutants inhibit differentially Bax and ceramide channels and thus tease apart, to some extent, these two modes of MOM permeabilization. Ceramide channels have the right properties and appropriate regulation to be key players in the induction of apoptosis.  相似文献   

12.
A critical step in apoptosis is mitochondrial outer membrane permeabilization (MOMP), releasing proteins critical to downstream events. While the regulation of this process by Bcl-2 family proteins is known, the role of ceramide, which is known to be involved at the mitochondrial level, is not well-understood. Here, we demonstrate that Bax and ceramide induce MOMP synergistically. Experiments were performed on mitochondria isolated from both rat liver and yeast (lack mammalian apoptotic machinery) using both a protein release assay and real-time measurements of MOMP. The interaction between activated Bax and ceramide was also studied in a defined isolated system: planar phospholipid membranes. At concentrations where ceramide and activated Bax have little effects on their own, the combination induces substantial MOMP. Direct interaction between ceramide and activated Bax was demonstrated both by using yeast mitochondria and phospholipid membranes. The apparent affinity of activated Bax for ceramide increases with ceramide content indicating that activated Bax shows enhanced propensity to permeabilize in the presence of ceramide. An agent that inhibits ceramide-induced but not activated Bax induced permeabilization blocked the enhanced MOMP, suggesting that ceramide is the key permeabilizing entity, at least when ceramide is present. These and previous findings that anti-apoptotic proteins disassemble ceramide channels suggest that ceramide channels, regulated by Bcl-2-family proteins, may be responsible for the MOMP during apoptosis.  相似文献   

13.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

14.
In the intrinsic pathway of apoptosis, mitochondria play a crucial role by releasing cytochrome c from the intermembrane space into the cytoplasm. Cytochrome c release through Bax/Bak-dependent channels in mitochondria has been well documented. In contrast, cyclophilin D (CypD), an important component of permeability transition pore-dependent protein release, remains largely undefined, and no apoptogenic proteins that act specifically in a CypD-dependent manner have been reported to date. Here, we describe a novel and evolutionarily conserved protein, apoptogenic protein (Apop). Mouse Apop-1 expression induces apoptotic death by releasing cytochrome c from mitochondria into the cytosolic space followed by activation of caspase-9 and -3. Apop-1-induced apoptosis is not blocked by Bcl-2 or Bcl-xL, inhibitors of Bax/Bak-dependent channels, whereas it is completely blocked by cyclosporin A, an inhibitor of permeability transition pore. Cells lacking CypD were resistant to Apop-induced apoptosis. Moreover, inhibition of Apop expression prevented the cell death induced by apoptosis-inducing substances. Our findings, thus, indicate that the expression of Apop-1 induces apoptosis though CypD-dependent pathway and that Apop-1 plays roles in cell death under physiological conditions.  相似文献   

15.
Ceramides are potent lipid second messengers that are involved in apoptotic and hypoxic/ischaemic neurone death. We investigated the role of mitochondria and the mitochondrial apoptosis pathway in ceramide-induced cell death using human D283 medulloblastoma cells with a reduced mitochondrial DNA copy number (rho- cells) and a corresponding defect in mitochondrial respiration. Treatment with the complex I inhibitor rotenone, C2- or C8-ceramide induced cell death in D283 control cells, while rho- cells were significantly protected. In contrast, activation of the mitochondrial apoptosis pathway by transient overexpression of the pro-apoptotic Bax protein or exposure to the kinase inhibitor staurosporine induced apoptosis to a similar extent in control and rho- cells. Overexpression of the antiapoptotic protein Bcl-xL failed to inhibit the toxic effect of C2-ceramide in D283 control cells, and no significant increase in caspase-3-like protease activity could be detected during the death process. Despite this, C2-ceramide induced significant chromatin condensation and cell shrinkage in D283 control cells, reminiscent of apoptosis. These morphological alterations were associated with the activation of calpains. Both apoptotic morphology and calpain activation were attenuated in rho- cells. Our data indicate that the apoptosis-inducing effect of C2-ceramide may require mitochondrial respiratory chain activity and can occur independently of the mitochondrial apoptosis pathway, but involves the activation of calpains.  相似文献   

16.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

17.
Hsp70 overexpression can protect cells from stress-induced apoptosis. Our previous observation that Hsp70 inhibits cytochrome c release in heat-stressed cells led us to examine events occurring upstream of mitochondrial disruption. In this study we examined the effects of heat shock on the proapoptotic Bcl-2 family member Bax because of its central role in regulating cytochrome c release in stressed cells. We found that heat shock caused a conformational change in Bax that leads to its translocation to mitochondria, stable membrane association, and oligomerization. All of these events were inhibited in cells that had elevated levels of Hsp70. Hsp70 did not physically interact with Bax in control or heat-shocked cells, indicating that Hsp70 acts to suppress signals leading to Bax activation. Hsp70 inhibited stress-induced JNK activation and inhibition of JNK with SP600125 or by expression of a dominant negative mutant of JNK-blocked Bax translocation as effectively as Hsp70 overexpression. Hsp70 did not protect cells expressing a mutant form of Bax that has constitutive membrane insertion capability or cells treated with a small molecule activator of apoptosome formation, indicating that it is unable to prevent cell death after mitochondrial disruption and caspase activation have occurred. These results indicate that Hsp70 blocks heat-induced apoptosis primarily by inhibiting Bax activation and thereby preventing the release of proapoptotic factors from mitochondria. Hsp70, therefore, inhibits events leading up to mitochondrial membrane permeabilization in heat-stressed cells and thereby controls the decision to die but does not interfere with cell death after this event has occurred.  相似文献   

18.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

19.
The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K–Akt-dependent GSK3β phosphorylation and β-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.  相似文献   

20.
The present study demonstrates the important structural features of ceramide required for proper regulation, binding and identification by both pro-apoptotic and anti-apoptotic Bcl-2 family proteins. The C-4=C-5 trans-double bond has little influence on the ability of Bax and Bcl-xL to identify and bind to these channels. The stereochemistry of the headgroup and access to the amide group of ceramide is indispensible for Bax binding, indicating that Bax may interact with the polar portion of the ceramide channel facing the bulk phase. In contrast, Bcl-xL binding to ceramide channels is tolerant of stereochemical changes in the headgroup. The present study also revealed that Bcl-xL has an optimal interaction with long-chain ceramides that are elevated early in apoptosis, whereas short-chain ceramides are not well regulated. Inhibitors specific for the hydrophobic groove of Bcl-xL, including 2-methoxyantimycin A3, ABT-737 and ABT-263 provide insights into the region of Bcl-xL involved in binding to ceramide channels. Molecular docking simulations of the lowest-energy binding poses of ceramides and Bcl-xL inhibitors to Bcl-xL were consistent with the results of our functional studies and propose potential binding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号