首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

2.
A capillary zone electrophoretic (CZE) method was investigated for the determination of Gleevec and its main metabolite (N-demethylated piperazine derivative) in human urine using a fused-silica capillary (75 microm I.D.x60 cm total length, 10 cm effective length). The separation was performed with an hydrodynamic injection time of 10 s (0.5 p.s.i.) a voltage of -25 kV, a capillary temperature of 25 degrees C and a 100 mM phosphoric acid adjusted to pH 2 with the addition of triethanolamine. Under these conditions, the analysis takes about 5 min. A linear response over the 0.4-30.0 mg l(-1) concentration range was investigated for two compounds. A dilution of the sample was the only step necessary before the electrophoresis analysis. Detection limits of 0.1 mg l(-1) for Gleevec and its metabolite (S/N=3) were obtained. The developed method is easy, rapid and sensitive and has been applied to determine Gleevec and its main metabolite in clinical urine samples.  相似文献   

3.
A method for the detection of 8-hydroxydeoxyguanosine by high-performance capillary electrophoresis (HPCE) was developed. Separations were performed in an uncoated silica capillary (44 cm × 75 μm I.D.) with a P/ACE system with diode-array detector. The separation of purine deoxynucleosides and 8-hydroxydeoxyguanosine was optimized with regard to pH, temperature, applied potential and hydrodynamic injection time. Optimum conditions were 20 mM borate buffer (pH 9.5), 25°C, 25 kV, 20 s load and detection at 254 nm. This method allowed the detection of 8-hydroxydeoxyguanosine in the presence of a 105-fold higher amount of deoxyguanosine. Isolated nuclei from K562 human hematopoietic cells were treated with 15 mM hydrogen peroxide for 2 h. The nuclei were extensively dialyzed and DNA was isolated, enzymatically hydrolyzed to the deoxynucleosides and analyzed by HPCE. DNA from hydrogen peroxide treated nuclei had a 4-fold higher content of 8-hydroxydeoxyguanosine than untreated controls. HPCE analysis of 8-hydroxydeoxyguanosine is fast and simple. Furthermore, it requires a very small sample volume, which makes it useful for biomedical and clinical applications.  相似文献   

4.
A carbon paste electrode containing ruthenium(IV) oxide as a modifier was tested as an effective hydrogen peroxide amperometric sensor in bulk measurements (hydrodynamic amperometry). Factors that influence its overall analytical perform ance, such as pH and the applied potential, were examined. The RuO2-modified electrode displayed high sensitivity towards hydrogen peroxide, with detection limits as low as 0.02 mm at pH 7.4 and 0.007 mM at pH 9.0. The method was applied for monitoring the decomposition of hydrogen peroxide (by catalase) in phosphate buffer of pH 7.4. The relative response of the electrode towards ascorbic acid was assessed and it was found that the selectivity of the RuO2-modified electrode towards hydrogen peroxide over ascorbic acid could be significantly improved by electro-polymerizing m-phenylenediamine on its surface prior to measurements. The RuO2-modified electrode was used for the kinetic (fixed time) determination of catalase activity in the range of 4-40 U/mL (detection limit 1.2 U/mL). The method was applied to the determination of catalase-like activity in various plant materials (recov-ery ranged from 93 to 101%, detection limit 480 U/100 g).  相似文献   

5.
A new method for the determination of the peptide hormones and their fragments by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection and transient pseudo-isotachophoresis (pseudo-tITP) preconcentration was established in this study. The LIF detector used an argon ion laser with excitation wavelength at 488 nm and emission wavelength at 535 nm. Fluorescein isothiocyanate (FITC) was used as precolumn derivatization reagent to label cholecystokinin tetrapeptide (CCK-4), neurotensin (NT), neurotensin hexapeptide (NT8–13), and neurokinin B (NKB). Borate (10 mmol/L, pH 9.0) was selected as derivatization medium to get the high efficiency. When the addition of 70% (v/v) methanol and 1% (m/v) sodium chloride (NaCl) to the sample matrix, and with borate buffer (110 mM, pH 9.5) and 20% (v/v) methanol as running buffer, a preconcentration based on the pseudo-tITP afforded 100-fold improvement in peak heights compared with the traditional hydrodynamic injection (2.3% capillary volume). The detection limits (signal/noise = 3) based on peak height were found to be 0.04, 0.1, 0.2, and 0.08 nmol/L for NT8–13, NT, NKB, and CCK-4, respectively. The method was validated and applied to qualitative analysis of NT and NT8–13 in human cerebrospinal fluid sample.  相似文献   

6.
A solid-phase extraction (SPE) method for sample clean-up followed by a reversed-phase HPLC procedure for the assay of alinastina (pINN) in biological fluids is reported. The effects of the sample pH, composition of the washing and elution solvents and the nature of the SPE cartridge on recovery were evaluated. The selectivity of SPE was examined using spiked rat urine and plasma samples and the CH and PH cartridges gave rise to the cleanest extracts. The recoveries obtained in spiked rat urine and plasma samples were 91.2±2.7 and 99.9±2.8%, respectively. The proposed SPE method coupled off-line with a reserved-phase HPLC system with fluorimetric detection was applied to the quantitation of alinastine in real rat urine samples. The analytical method was also applied and validated for the determination of alinastine in dog plasma. The recovery from spiked dog plasma samples using the PH cartridge was around 65%. The within-day and between-day precisions were 7 and 12%, respectively. The detection and quantitation limits in dog plasma were 0.024 and 0.078 μg/ml, respectively.  相似文献   

7.
This paper presents the development of a simple liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to determine corticosteroids in bovine urine sample matrices. This method uses a single phase extraction (SPE) for cleaning of the sample with an Oasis MAX cartridge at pH 9.0–9.5 and elution by a neutral organic solvent (acetonitrile/dichloromethane), followed by separation on a GEMINI C18 column in the gradient mode with acetate buffer (pH 4.1)/methanol. A triple quadrupole mass spectrometer equipped with a multimode ion source, set to negative atmospheric pressure chemical ionization (APCI) in the multiple reaction monitoring mode was used for detection. The main advantage of this method over other commonly used methods includes the use of SPE with a low volume cartridge for sample preparation and no ion suppression effects from matrix components of the urine samples in the LC–MS/MS analysis. This allowed a reduction the quantification limits (decision limits, CCα) for the first time to 0.1 μg/L (1 and 0.2 μg/L for triamcinolone and flumethasone, respectively). The developed method was validated in accordance with the European Union Commission Decision 2002/657 EC. The recoveries and within-laboratory reproducibility varied from 77% to 115% and 87% to 107.5%, respectively, at 2, 3, and 4 μg/L levels of corticosteroids. The relative standard deviation (RSD) of the measurements was lower than 30%. The decision limit was calculated by multiplying the signal-to-noise ratio by 3 and the obtained values were in the range of 0.1–1.0 μg/L, confirmed by the analysis of twenty blank samples, which were spiked at the desired concentrations. The detection capability was calculated by the addition of the decision limit and the standard deviation followed by multiplication by 1.64 of the within-laboratory reproducibility at 2 μg/L of corticosteroids. The method was applied to four urine samples, giving concentrations of prednisolone (PRED) residues in the range from 0.3 to 0.9 μg/L.  相似文献   

8.
A novel determination method for josamycin (JOS) based on capillary electrophoresis-electrochemiluminescence detection has been described. In this study, platinum disk electrode (300 microm in diameter) was used as a working electrode and the conditions affecting separation and detection were investigated in detail. Under optimal condition: 40 cm separation capillary (75 microm i.d.); 1.25 V applied potential on the Pt disc of the ECL detector cell; 5 mM Ru(bpy)3(2+) and 50mM phosphate buffer (pH 7.5) in the detection cell; 12 kV separation voltage; 8s injection time; 10 kV injection voltage and 15 mM running buffer (pH 7.5), calibration curve was linear over the range from 10 ng/mL to 5.0 microg/mL with a detection limit of 3.1 ng/mL at a signal-to-noise ratio of 3. The method can be successfully applied for the determination of josamycin in rat plasma in 6 min and the extraction recoveries with spiked plasma samples were over 92%.  相似文献   

9.
A newly developed capillary electrophoretic method using laser-induced fluorescence detection (CE-LIF) for the analysis of monosaccharides released from acid hydrolysis of glycosaminoglycans was studied. The method was compared with a previously published method using indirect LIF detection (CE-ILIF). For the CE-LIF method, electrophoretic conditions for the separation of the monosaccharides derivatised with 8-aminopyrene-1,3,6-trisulfonate (APTS) were optimised. The best separations were obtained using 100 mM acetate at pH 4.5 as running buffer. The influence of the injection vial volume on the precision and stability of the sample in different conditions was studied. The detection limits of the CE-LIF method were found to be 0.4-0.6 nM, while those obtained by CE-ILIF ranged from 11.4 to 14.3 microM. Other quality parameters of the method, such as run-to-run precision, day-to-day precision, and linearity were also determined. Finally, the new method was applied to the analysis of the acid hydrolysis products from a glucosaminoglycan (heparin) and a galactosaminoglycan (dermatan sulfate) and cross-contamination between the two solutions was determined. The high sensitivity of the new method allows the determination of dermatan sulfate contaminations in a heparin raw sample down to 0.04% (w/w) and broadens the practical applicability of CE-LIF for the quantitation of the endogenous levels of glycosaminoglycans in animal samples and for pharmacokinetic control after therapeutical heparin administration.  相似文献   

10.
A micellar electrokinetic capillary chromatography (MECC) method was developed for the separation of the 3-O-glucuronides of entacapone and its (Z)-isomer, the two main urinary metabolites of entacapone in humans. Entacapone is a novel, potent inhibitor of catechol-O-methyltransferase (COMT) intended for use as an adjunct in the treatment of Parkinson’s disease. Urine samples spiked with synthetic 3-O-glucuronides were used to study the effects of running buffer pH, composition and applied voltage on separation of the closely migrating glucuronides. The 3-O-glucuronide of nitecapone, was used as internal standard. The greatest improvement in separation was achieved by increasing the running buffer ionic concentration. Changes in pH had little effect on the separation, whereas increase in sodium dodecyl sulfate (SDS) concentration slightly improved resolution. Baseline separation and good selectivity relative to urine components were achieved by using a phosphate (25 mM)–borate (50 mM)–SDS (20 mM) running buffer, pH 7.0, in a 75 μm×60/67 cm fused-silica capillary at 15 kV and a 335 nm cut-off filter in the UV detector. The limits of detection (LOD) at a signal-to-noise ratio of 3 were about 0.25 μg/ml (5.2·10 −7M) (injection 0.5 p.s.i./8 s). The linear detection range was 2–100 μg/ml (r2>0.999). Good repeatability of injection and relative migration times were obtained.  相似文献   

11.
F Ehrenstr?m 《Life sciences》1988,43(7):615-627
A method with improved sensitivity for detection of catechols (CA) in small volumes of plasma using an ion-pair reversed phase HPLC system with electromechemical detection is presented. Fast isocratic separations were obtained by using 7.5 cm x 4.6 mm (i.d.) reversed phase columns with 3C18 3 micron silica particles. The CA:s L-DOPA, Noradrenaline (NA), Adrenaline (A), Dihydroxybenzylamine (DHBA, i.s.), DOPAC and Dopamine (DA) were separated in less than 4 min. The performance of three different electrochemical cells was compared with respect to hydrodynamic voltammogram, band broadening effect, linearity and detection limit. The sample preparation procedure using alumina extraction of CA:s, was modified to improve recoveries and decrease dilution factors. A modified carbon paste cell (CP-O) gave a response 4-8 times higher than what is previously reported for GC cells. Detection limits were: L-DOPA 80, NA 1.25, A 1.25, DHBA 0.4, DOPAC 1.25 and DA 0.6 pg/injection. Application to plasma from rat and fish (cod) under rest, exercise and stress is reported. The method allows determination of CA:s in small volumes of plasma (less than 500 microliter) obtained several times a day from the same animal even if it is small (less than 1/2 kg), is under rest and parts of the plasma sample are to be used for analysis of other parameters than CA:s.  相似文献   

12.
The determination of caffeine and its analogues is important for a wide variety of analyses and is performed in an assortment of matrices ranging from food to clinical samples. While reversed-phase HPLC has become the standard analysis protocol in most laboratories, capillary electrophoresis has the advantages of higher separation efficiency and shorter separation time. The micellar capillary electrophoresis (MECC) separation of caffeine and its metabolites, theobromine, paraxanthine, theophylline and 1,3,7-trimethyluric acid was investigated using sodium dodecyl sulphate (SDS) as the micellar phase. The effects of pH, micelle concentration, buffer concentration, ionic strength, buffer salts, applied voltage and injection time were studied to select the optimum conditions for the determination of caffeine and its four analogues in drugs, foods and body fluids. Caffeine and its three analogues were resolved within 120 s with detection limits less than 1 μg/ml. Samples could be analyzed utilizing direct injection with satisfactory resolution and reproducibility.  相似文献   

13.
A micellar electrokinetic capillary chromatography (MEKC) for determining fluoxetine and its metabolite (norfluoxetine) is proposed. Optimal conditions for the quantitative separation were investigated. A background electrolyte solution consisting of 5 mM phosphate buffer adjusted to pH 12.3 and 40 mM of 1-decanesulfonic acid sodium salt (DSS), hydrodynamic injection and 25 kV of separation voltage were used. Good linearity and precision were obtained for both compounds. Detection limits of 0.2 mg/l for fluoxetine and norfluoxetine were obtained. The developed method is rapid and it has been applied to determine fluoxetine and its metabolite in human serum and urine. The samples were purified and enriched by means of extraction-preconcentration step with a preconditioned C18 cartridge and eluting the compounds with methanol.  相似文献   

14.
Three phase liquid phase microextraction (three phase LPME) technique coupled with HPLC-UV has been applied as a sensitive and efficient sample preparation method to determine phenylacetic acid (PAA) as a biomarker of depressive disorders and phenylpropionic acid (PPA) in biological fluids. The compounds were extracted from 3.0 ml aqueous solution with the adjustment of pH at a fixed value in the range of 2.0-3.5 (donor solution) into an organic phase (1-hexanol) layered on the surface of the donor solution and finally back-extracted into 4.0 microl of the acceptor microdrop (pH 11.1) located at the end of the microsyringe needle. After a prescribed back-extraction time, the acceptor microdrop was withdrawn into the microsyringe and then directly injected into the HPLC system. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. At the optimum conditions (donor solution: 2.3M Na(2)SO(4), pH 2.0-3.5; organic membrane: 95 microl of 1-hexanol; acceptor solution: 4.0 microl of 0.1M NH(3)/NH(4)(+) with pH 11.1; donor solution temperature: 45-50 degrees C; extraction time: 20 min and back-extraction time: 12 min), up to 110-fold enrichment factor was obtained. The calibration curve for these analytes was linear in the range of 1-5000 microg/l with r(2)>0.998. The intraday and interday RSD% were below 6.5% and the limits of detection (LODs) for both analytes were 0.2 microg/l (based on S/N=3). The proposed technique is a low cost, simple and sensitive method with highly clean-up effect. Finally, this technique was successfully utilized for the detection of target analytes in human urine, serum and plasma.  相似文献   

15.
A high-performance micellar electrokinetic capillary chromatography (MEKC) has been demonstrated for the determination of meropenem in human plasma and in cerebrospinal fluid (CSF) and application in meningitis patients after intravenous (IV) administration. Plasma sample was pretreated by means of solid-phase extraction (SPE) on C(18) cartridge and CSF sample was by direct injection without sample pretreatment, with subsequent quantitation by MEKC. The separation of meropenem was carried out in an untreated fused-silica capillary (40.2 cm x 50 microm I.D., effective length 30 cm) and was performed at 25 degrees C using a background electrolyte consisting of Tris buffer (40 mM, pH 8.0) solution with sodium dodecyl sulfate (SDS) as the running buffer and on-column detection at 300 nm. Several parameters affecting the separation and sensitivity of the drug were studied, including pH, the concentrations of Tris buffer and surfactant. Using cefotaxime as an internal standard (IS), the linear ranges of the method for the determination of meropenem in plasma and in CSF were all over 0.5-50 microg/mL; the detection limits (signal-to-noise ratio=3) of meropenem in plasma and in CSF were 0.2 microg/mL and 0.3 microg/mL, respectively.  相似文献   

16.
A simple and rapid capillary electrophoresis (CE) with an acidic potassium permanganate chemiluminescence (CL) detection method was developed to determine three alkaloids (curine, sinomenine and magnoflorine) simultaneously. A laboratory‐built CE–CL detection interface was used. The field‐amplified sample stacking technique was applied to the online concentration of alkaloids. Experimental conditions for CE separation and CL detection were investigated in detail to acquire optimum conditions. Under optimal conditions, the three alkaloids were baseline separated within 6 min, and the detection limits (S/N = 3) ranged from 0.03 µg/mL to 0.49 µg/mL. This method was successfully applied to determine the above three alkaloids in Sinomenium acutum, and the result of the determination of sinomenine was in good agreement with those given by high‐performance liquid chromatography and CE methods. In addition, a possible CL reaction mechanism of sinomenine–KMnO4–H2SO4 was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Tetracyclines (TCs) were found to strongly inhibit the electrochemiluminescence (ECL) from the Ru(bpy)3(2+)-tripropylamine system when a working Pt electrode was maintained at 1.05 V (vs. Ag/AgCl) in pH 8.0 carbonate buffer solution. On this basis, a flow injection (FI) procedure with inhibited electrochemiluminescence detection has been developed for the determination of tetracycline (TC) and oxytetracycline (OTC). Under the optimized condition, the linear ranges of 2.0 x 10(-8)-1.0 x 10(-5) and 1.0 x 10(-8)-1.0 x 10(-5) g/mL and the detection limits of 4.0 x 10(-9) and 3.8 x 10(-9) g/mL were obtained for TC and OTC, respectively. The relative standard deviations (RSD) were 0.68% and 1.18% for 5.0 x 10(-7) g/mL TC and OTC (n = 13), respectively. The method showed higher sensitivity than most of the reported methods. It was successfully applied to the determination of tetracycline in a Chinese proprietary medicine, Tetracyclini and Cortisone Eye Ointment, and the residues of tetracycline in honey products. The inhibition mechanism has been proposed due to an energy transfer between electrogenerated Ru(bpy)3(2+)* and benzoquinone derivatives at the electrode surface.  相似文献   

18.
A capillary electrophoresis method was described for the determination of metformin in human plasma based on the extraction of the ion-pair with bromothymol blue into chloroform. Phenformin was used as internal standard. Field-amplified sample stacking injection was employed with an electrokinetic injection voltage of 10 kV for 10 s. The running buffer was 0.1 M phosphate buffer (pH 2.5), running voltage was 20 kV and the UV absorbance detection was set at 195 nm. The limit of quantitation was 0.25 μg/ml. Linearity range of calibration curve was 0.25 to 3.5 μg/ml. Recoveries for three levels (0.25, 1 and 2 μg/ml) were 80.24%, 67.44% and 58.97% (n=5 for each level), respectively. The intra-day precisions for the three levels were 11.9%, 3.09% and 4.33% and the inter-day precisions were 12.4%, 4.57% and 4.94%, respectively. The concentrations of metformin hydrochloride in human plasma of eight volunteers were measured after orally administrating metformin enteric-capsule and tablet.  相似文献   

19.
This work reports the development and optimization of a flow injection analysis system with fluorescence detection (FIA–FLUO) for gatifloxacin (GFX) determination in organized medium. The analytical system was based on the enhanced fluorescence of gatifloxacin in micellar medium containing sodium dodecyl sulfate (SDS) at pH 6.0. The influence of physical (carrier flow rate, sample volume and volume of reaction coil) and chemical (pH, concentration of buffer and concentration of SDS) parameters that could affect the performance of the FIA system was evaluated in order to reach optimum conditions in terms of sensitivity and analytical throughput. Under optimized conditions, the FIA–FLUO system allowed the injection of 40 samples per hour with a limit of quantification of 72 µg/L and a RSD of 3.5% at 0.20 mg/L. Real samples of commercial pharmaceutical formulations containing GFX were analyzed, and no statistical difference was observed between the results obtained using the developed system and those obtained using the reference method based on high‐performance liquid chromatography with UV detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Extracts of roots Phyllanthus acidus were examined by free zone capillary electrophoresis, micellar electrokinetic chromatography (MEKC), and MEKC using the sweeping technique which involves application of a negative potential to the inlet end of the capillary and very much longer than conventional injection times. The latter technique, using a buffer of 50 mM sodium dihydrogen phosphate (pH 2) containing 80 mM sodium dodecylsulphate and 30% methanol was found to allow complete resolution of the active constituents of P. acidus, phyllanthusols A and B, from each other and from other extracted components in under 30 min. Several other components could be detected when hydrodynamic injection times of 500 s were used. The separation, combined with an appropriate extraction procedure and using an internal standard of proguanil, permitted quantification of both phyllanthusols. Calibrations were linear over the range 2-8 micrograms/mL for phyllanthusol A, and 1-4 micrograms/mL for phyllanthusol B. Within-day and day-to-day repeatability RSDs were below 10%, and the precision of extraction RSD was around 14%. The limits of quantification and detection were 0.55 and 0.24 microgram/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号