首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ethanol and tunicamycin on synthesis and secretion of galactose oxidase was studied in resting cells of Dactylium dendroides. Ethanol promoted an overall decrease in both intra- and extracellular enzyme levels to the same extent that it inhibited [14C]glucosamine incorporation into total protein. The carbohydrate content of the intracellular enzyme was also depressed (44%) with a simultaneous decrease in O-Ser linked oligosaccharides. The intracellular galactose oxidase obtained after exposure of mycelia to ethanol plus tunicamycin lost 86% of its carbohydrate moieties, whereas the extracellular form lost only 35%. In both cases, residual sugar moieties were not eliminated by mild alkaline treatment. These data suggest that ethanol affects O-glycosylation of galactose oxidase. O-Underglycosylation did not affect the S0.5 values for galactose but diminished the molar catalytic activity. The absence of O-Ser/Thr-linked saccharides turned the intracellular enzyme into a form more susceptible to proteolysis than that devoid of N-linked sugars (tunicamycin-treated). O-Underglycosylation had a significant effect on the renaturation-reactivation of the enzyme after denaturation with 2.4 M Gdn-HCl.  相似文献   

2.
The subcellular sites of synthesis and route of intracellular transfer of immunoglobulin G (IgG) have been investigated by electron microscope radioautography with precursors used for the polypeptide chain (leucine-3H) and for the carbohydrate moieties (galactose-3H and glucosamine-3H). For this purpose, plasma cells from a mouse myeloma tumor were labeled with appropriate precursors and the distribution of radioautographic grains was determined at the end of the labeling period and after varying times of incubation in unlabeled medium. The results indicated that the polypeptide backbone is synthesized in a region of the cell occupied by the rough endoplasmic reticulum (RER) and is transported from there to the region of the Golgi complex. Galactose is incorporated in IgG primarily at the level of the Golgi complex, whereas the incorporation of glucosamine appears to take place both in the RER and in the Golgi complex. From the Golgi complex, the completed IgG molecules reach the plasma membrane and are discharged extracellularly. The latter route of transport and the mechanism of discharge are not understood but may be mediated via smooth-surfaced vesicles.  相似文献   

3.
1. When pig ear skin slices were cultured for 18h in the presence of 1μg of tunicamycin/ml the incorporation of d-[3H]glucosamine into the epidermis, solubilized with 8m-urea/5% (w/v) sodium dodecyl sulphate, was inhibited by 45–55%. This degree of inhibition was not increased by using up to 5μg of tunicamycin/ml or by treating the skin slices with tunicamycin for up to 8 days. The incorporation of (U-14C)-labelled l-amino acids under these conditions was not affected by tunicamycin. Polyacrylamide-gel electrophoresis indicated that the labelling of the major glycosaminoglycan peak with d-[3H]glucosamine was unaffected, whereas that of the faster migrating glycoprotein components was considerably decreased in the presence of tunicamycin. 2. Subcellular fractionation indicated that tunicamycin specifically inhibited the incorporation of d-[3H]glucosamine but not of (U-14C)-labelled l-amino acids into particulate (mainly plasma-membrane) glycoproteins by about 70%. The labelling of soluble glycoproteins was hardly affected. Polyacrylamide-gel electrophoresis of the plasma-membrane fraction showed decreased d-[3H]glucosamine incorporation into all glycoprotein components, indicating that the plasma-membrane glycoproteins contained mainly N-asparagine-linked oligosaccharides. 3. Cellulose acetate electrophoresis of both cellular and extracellular glycosaminoglycans showed that tunicamycin had no significant effect on the synthesis of the major component, hyaluronic acid. However, the incorporation of both d-[3H]glucosamine and 35SO42− into sulphated glycosaminoglycans was inhibited by about 50%. This inhibition was partially overcome, at least in the cellular fraction, by 2mm-p-nitrophenyl β-d-xyloside indicating that tunicamycin-treated epidermis retained the ability to synthesize sulphated glycosaminoglycan chains. Tunicamycin may affect the synthesis and/or degradation of proteoglycan core proteins or the xylosyltransferase. 4. Electron-microscopic examination of epidermis treated with tunicamycin for up to 4 days revealed no significant changes in cell-surface morphology or in epidermal-cell adhesion. Either N-asparagine-linked carbohydrates play little role in epidermal-cell adhesion or more probably there is little turnover of these components in epidermal adhesive structures such as desmosomes and hemidesmosomes during organ culture.  相似文献   

4.
Using rat or chick hepatocyte monolayers, we have studied the effect of tunicamycin, a specific inhibitor of protein glycosylation, on the synthesis and secretion of serum proteins. Tunicamycin inhibited glucosamine incorporation into rat liver transferrin and the apoprotein B chain of chick liver very low density lipoprotein (VLDL) by 75 to 90%. In contrasts, amino acid incorporation into these two glycoproteins, as well as into the normally unglycosylated proteins, rat serum albumin and apoprotein A of chick liver VLDL, was decreased by only 10 to 25% in the presence of the antibiotic. Despite the inhibitory effect of tunicamycin on glycosylation, secretion of all four proteins was virtually unimpaired. Thus, the carbohydrate moieties of rat liver transferrin or apoprotein B of chick liver VLDL do not appear to play an essential role in the secretion process.  相似文献   

5.
The incorporation of [3H]glucosamine, [3H]mannose, and [35S]methionine into rhodopsin was investigated in retinas which had been incubated in the presence and absence of the antibiotic, tunicamycin. In its presence, the incorporation of glucosamine was inhibited 70% and mannose, 96% compared to controls. In the presence of tunicamycin the attachment of glucosamine to core-region sites was virtually eliminated. The formation of unglycosylated rhodopsin was also indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and concanavalin A-Sepharose chromatography. These findings are consistent with the participation of the lipid-linked pathway in the glycosylation of this well-characterized intrinsic glycoprotein of the membranes of the disk of the rod outer segment. As indicated by the incorporation of [35S]methionine, the synthesis of rhodopsin apoprotein was inhibited by a much lesser amount. This suggests that the glycosylation of rhodopsin is not required for its insertion into the disk membrane.  相似文献   

6.
The presence in the Golgi fraction of glycoproteins destined to be incorporated into the microsomal membrane was investigated. When incubated in sucrose, washed Golgi vesicles released four major, weakly acidic glycoproteins, some of which could be incorporated into microsomal membranes by incubation. Double labeling with [3H]glucosamine and [14C]leucine demonstrated the incorporation of both protein and oligosaccharide moieties, and the main peak of radioactivity was associated with the 70,000 mol wt region after SDS-gel electrophoresis. The proteins that could be incorporated into microsomes were probably associated to a large extent with the outer surface of the Golgi membrane. Centrifugation of the proteins released from the Golgi in a KBr solution (p = 1.24) resulted in a separation of glycoproteins, those in the top layer most actively incorporated into microsomes. The lipoglycoproteins in the top layer that could be incorporated appeared in the 70,000 mol wt region after SDS-gel electrophoresis, as did the corresponding proteins isolated from the supernate. These results suggest that glycoproteins with completed oligosaccharide chains are released from the Golgi system to the cytosol and are subsequently transferred to microsomes as constitutive membrane components.  相似文献   

7.
Glycosylation of CD4. Tunicamycin inhibits surface expression   总被引:8,自引:0,他引:8  
The T-cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. We have examined the glycosylation of CD4 and asked whether carbohydrate addition is essential for proper expression of the glycoprotein on the cell membrane. Under conditions where treatment of CD4+ human acute lymphoblastic leukemia cells (CEM-CM3 cells) with the glycosylation inhibitor tunicamycin decreased surface expression of CD4 in a time- and concentration-dependent manner, the surface expression of several other glycoproteins was unaffected. Incubation with tunicamycin for 48 h inhibited mannose incorporation by 98%, caused a 76% decrease in CD4 surface expression as judged by flow cytometry, and had little effect on methionine incorporation. Scatchard analysis showed a decrease in the total number of CD4 molecules on the cell surface from 17,000 to 8,900 after 24 h of tunicamycin treatment. Immunoprecipitation of metabolically labeled CD4 revealed the presence of an unglycosylated precursor in tunicamycin-treated cells. The observed difference between the Mr of the glycoprotein and its precursor is consistent with glycosylation at two potential N-linked sites. However, this precursor could not be detected by measuring steady state levels by immunoblotting. Also, no intracellular accumulation of CD4 in tunicamycin-treated cells was detectable using immunofluorescence microscopy. We conclude that surface expression of CD4 depends on glycosylation of the protein and that the unglycosylated precursor is preferentially degraded.  相似文献   

8.
The uterine milk proteins (UTM-proteins), a pair of basic glycoproteins with similar isoelectric points and molecular weights (57,000 and 55,000), are secreted by the endometrium of the pregnant ewe. Peptide mapping of the two species of UTM-proteins demonstrated them to be structurally related. Furthermore, pulse-chase and continuous-labeling experiments indicated that both are produced from a common precursor of lower molecular weight. Purified UTM-proteins were found to be rich in basic amino acids, low in tyrosine, and apparently lacking in tryptophan. The proteins were about 5.6-5.7% carbohydrate by weight and bound the lectin, concanavalin A. UTM-proteins synthesized in vitro incorporated D-[3H]glucosamine. Analysis of [3H]glucosamine-labeled glycopeptides of Pronase-digested UTM-proteins by gel filtration indicated that most radioactivity is associated with one size class of oligosaccharide. UTM-proteins secreted by the endometrium in the presence of tunicamycin, an N-glycosylation inhibitor, were of lower molecular weight than those from control endometria, indicating that sugar chains are attached to the protein core via N-linkages to asparagine. UTM-proteins synthesized in culture incorporated [32P]orthophosphate, and tunicamycin inhibited this incorporation. Analysis of hydrolyzed UTM-proteins by paper chromatography indicated that much of the 32P was associated with mannose 6-phosphate. Because this moiety is the so-called lysosomal recognition marker and is present on uteroferrin, the acid phosphatase of porcine uterine secretions, we tested UTM-proteins for several enzymatic activities characteristic of lysosomes, but none was found. In conclusion, the UTM-proteins are related glycoproteins that, like porcine uteroferrin, contain mannose 6-phosphate, a result which suggests that secretion of glycoproteins with phosphorylated oligosaccharide chains may be a common feature of the progestational uterus.  相似文献   

9.
Prostaglandin E1 (PGE1) receptors from mouse mastocytoma P-815 cells were found to bind to a wheat germ agglutinin (WGA)-Agarose column, suggesting that the receptors are glycoproteins. To further elucidate the role of carbohydrate moieties in the PGE1 receptors for their binding activity to ligand, the P-815 cells were treated with tunicamycin, swainsonine or monensin. Tunicamycin, an inhibitor of N-glycosylation, dose- and time-dependently inhibited the binding of PGE1 to mastocytoma P-815 cells. Neither swainsonine, an inhibitor of Golgi mannosidase II, nor monensin, an inhibitor of processing beyond the high mannose stage, altered PGE1 binding properties of the cells. The inhibition of PGE1 binding by tunicamycin was observed when incorporation of [3H]glucosamine into macromolecules was inhibited. The inhibitory effect was not on their affinity but on their number of binding sites. Subcellular distributions of [3H]PGE1-binding activity showed that decreases in the binding activity by tunicamycin were highest in plasma membrane fractions. Treatment of membranes with various endo- and exoglycosidases did not affect PGE1 binding. PGE1-stimulated cyclic AMP accumulation in the cells was also inhibited by tunicamycin. These results suggest that PGE1 receptors of mastocytoma P-815 cells are glycoproteins and that inhibition of N-glycosylation of PGE1 receptors by tunicamycin results in the arrest of the translocation of newly synthesized receptors to the surface of mastocytoma P-815 cells.  相似文献   

10.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

11.
A cultured cell line of the mosquito, Aedes aegypti, is sensitive to tunicamycin as expected from the ability of crude membrane preparations to catalyse the formation of N-acetylglucosamine-linked dolichyl pyrophosphate. Formation of dolichylphosphomannose was also detected and this reaction was totally insensitive to tunicamycin. Incorporation of radioactive mannose into total acid-precipitable glycoproteins was inhibited greater than 90% in whole cells by tunicamycin, while the incorporation of leucine and glucosamine was less affected. Separation of the radioactive hexosamines from acid hydrolysates of cells incubated with [14C]glucosamine and tunicamycin showed predominant labelling of galactosamine, whereas in control cells not treated with the drug both glucosamine and galactosamine were labelled equally. Evidently, mosquito cells synthesise N-glycosidically linked carbohydrate chains assembled through tunicamycin-sensitive steps involving dolichyl pyrophospho-oligosaccharides, and O-glycosidically linked chains rich in N-acetylgalactosamine, the assembly of which is unaffected by tunicamycin. These results support structural evidence (Butters, T.D. and Hughes, R.C. (1981) Biochim. Biophys. Acta 640, 655–671) for the presence of high mannose N-glycans and N-acetylgalactosamine-richO-glycans in mosquito cell glycoproteins. The absence of complex N-glycans was confirmed by the demonstration of negligible activities of N-acetylglucosaminyl-, galactosyl- and sialyltransferases responsible for assembly of the terminal sequences of N-glycans of mature mammalian glycoproteins.  相似文献   

12.
This study was designed to determine the time in the intracellular life of immunoglobulin when the carbohydrate moieties are added. Plasma cells from a mouse myeloma tumor were exposed to glucosamine-3H (a "bridge" sugar), galactose-3H, or leucine-3H. With each of the above isotopes, the percentage of total radioactive immunoglobulin that has been secreted after different periods of labeling and the extent to which puromycin prevented incorporation into immunoglobulin were determined. The results indicate that both galactose and glucosamine (in its N-acetyl form) become covalently incorporated into immunoglobulin G late in its intracellular life and suggest that glucosamine is also added onto nascent polypeptide chains (i.e., on polyribosomes).  相似文献   

13.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum.  相似文献   

14.
Summary Endoplasmic reticulum, Golgi apparatus, plasma membrane and mitochondria vesicles were isolated from the roots of four-day-old dark-grown soybean [Glycine max (L.) Merr. cv. Wells II] seedlings and characterized by marker enzyme analyses. Glycoproteins of enriched membrane fractions were identified by concanavalin A (con A)-peroxidase staining of polypeptides separated by two-dimensional IEF-SDS-PAGE and transferred to nitrocellulose.Con A bound to many polypeptides in each endomembrane-enriched fraction with several glycopolypeptides common to all fractions. The mitochondria-enriched fraction possessed few glycopolypeptides and those appeared to be highly glycosylated contaminants of endomembrane origin. Comparison of the endomembrane con A-binding patterns revealed changes in relative stain intensity, molecular weight and isoelectric point of several membrane glycopolypeptides suggestive of processing reactions of the endomembrane complex.Abbreviations con A concanavalin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum  相似文献   

15.
The nonspecific alkaline phosphatase of yeast (Saccharomyces strain 1710) has been purified by ion exchange, hydrophobic, and affinity chromatography. This vacuolar enzyme has a molecular weight of 130,000 and is composed of subunits (probably of 66,000 molecular weight). It also has a small quantity of covalently associated carbohydrate; hydrolysis yielded mannose and glucosamine. The endo-beta-N-acetylglucosaminidase of Streptomyces plicatus released carbohydrate indicating that the latter was attached to protein through an N-acetylglucosaminylasparginyl bond. Synthesis of active alkaline phosphatase by yeast protoplasts is not depressed by tunicamycin, an inhibitor of dolichol-mediated protein glycosylation. Unlike the enzyme normally produced, the alkaline phosphatase which is formed in the presence of the antibiotic does not interact with concanavalin A and, therefore is deficient in or lacking carbohydrate. We infer that there is no regulatory link in yeast between the glycosylation of a protein and its synthesis. The fact that other Asn-GlcNAc-type glycoprotein enzymes of yeast such as acid phosphatase are not produced in their active forms by tunicamycin-treated protoplasts may mean that, as unglycosylated proteins, they cannot be correctly folded or processed. Protoplasts derepressed for phosphatase production contained substantial amounts of a second alkaline phosphatase which differed from the purified enzyme in substrate specificity, sensitivity to calcium, and reactivity with concanavalin A.  相似文献   

16.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

17.
Tunicamycin was found to specifically inhibit the incorporation of a number of sugars into L1210 leukemia cell glycoproteins. This inhibition of glyco-protein biosynthesis led to a cessation of cell growth which was reversible in a dose-dependent and time-dependent manner. After removal of the antibiotic from L1210 cell cultures resumption of sugar incorporation preceded that of thymidine incorporation and the recovery of cell growth. The treatment of cells with tunicamycin resulted in a significant increase in the intracellular pool of UDP-N-acetylglucosamine which occurred concurrently with alterations in cell ultrastructure including distentions of the endoplasmic reticulum and nuclear membranes. Similar ultrastructural changes and increases in the intracellular pools of UDP-sugars were observed in L1210 cells exposed to 5 mM D-glucosamine, which suggested that the antiproliferative effects of tunicamycin may be related to the accumulation in the endoplasmic reticulum of one or more nucleotide sugar precursors of asparagine-linked glycoprotein biosynthesis. However, the biological effects of tunicamycin could be distinguished from those caused by D-glucosamine. Exposure of L1210 cells to tunicamycin resulted in specific alterations in the biochemical composition of the plasma membrane and in the inhibition of cellular agglutination by wheat germ agglutinin which were not apparent following exposure to equitoxic concentrations of the aminosugar. These studies, together with those which demonstrated that recovery of the cellular capacity to synthesize glycoproteins was obligatory for the recovery of cellular proliferation in tunicamycin-treated cells, suggested that inhibition of the synthesis of glycoproteins was the major factor limiting L1210 leukemic cell proliferation.  相似文献   

18.
Incorporation of [14C]glucosamine into synaptosomes in vitro   总被引:1,自引:0,他引:1  
Abstract— Synaptosomes isolated from rat cerebral cortex by zonal centrifugation in-corporated radioactive glucosamine into macromolecules in vitro as glucosamine, galactosamine, N-acetylneuraminic acid, and glucuronic acid. The largest percentage of incorporated radioactivity was recovered in the particulate fraction in which radioactive carbohydrates were bound in covalent linkage requiring acid hydrolysis or enzymatic digestion for release. Less than 20 per cent of the particulate radioactivity represented incorporation into gangliosides. Some 20 per cent of the radioactivity was incorporated into proteins as glucosamine, identified in hydrolysates by paper chromatography and by the amino acid analyser. After incubation, radioactivity was demonstrable in the proteins as sialic acid by paper chromatography and specific enzymic digestion; and as glucuronic acid by chromatography, electrophoresis, and digestion with hyaluronidase. Incorporation of carbohydrate was stimulated by sodium and potassium at concentrations demonstrated to enhance incorporation of amino acids, and involved the macro-molecules of all subsynaptosomal fractions. Significant incorporation of radioactivity was found in the synaptic plasma membrane. The synthesis of glycoproteins was suggested by simultaneous incorporation of [14C]glucosamine and [3H]leucine into glycopeptides subsequently hydrolysed and subjected to polyacrylamide gel electrophoresis and two-dimensional paper chromatography and electrophoresis. Such studies demonstrated that amino acids and carbohydrates may be incorporated into glycoproteins of the synaptic membrane and suggest the possibility of local synthesis as well as modification of material brought to the nerve ending by axoplasmic flow.  相似文献   

19.
Tunicamycin--an inhibitor of yeast glycoprotein synthesis   总被引:38,自引:0,他引:38  
Tunicamycin, a glucosamine-containing antibiotic, halted synthesis of the external glycoproteins invertase, acid phosphatase and mannan by yeast protoplasts within 30 min; formation of two intracellular proteins, alpha-glucosidase and alkaline phosphatase, and of glucan continued at the control rate for at least 60–80 min. No accumulation of mannan-free acid phosphatase or invertase was evident in treated cells. Utilization of hexoses and incorporation of 14C-amino acids into protein were not affected. Incorporation of 3H-glucosamine into trichloroacetic acid-insoluble products was only partially reduced. In yeast tunicamycin acts primarily as an inhibitor of glycoprotein synthesis and not of general glucosamine metabolism.  相似文献   

20.
Cell surface glycoproteins apparently influence cell interactions, morphogenesis and the course of cellular differentiation. We have therefore investigated the biosynthesis of glycoproteins in 8-cell mouse embryos by using 1.0 μg tunicamycin/ml, a specific inhibitor of glycosylation of N-glycosidically linked glycoproteins. The antibiotic had little effect on the incorporation of leucine into polypeptides, but the incorporation of glucosamine and mannose was inhibited by about 60% with a marked reduction in their incorporation into the majority of the glycopeptides as analysed on polyacrylamide gels. The binding of concanavalin A (conA) and peanut lectin to the embryonic cell surface was also markedly diminished by tunicamycin. However, the binding of peanut lectin to isolated blastomeres displayed a polar distribution with predominant binding to the outer apical surface in all cases, despite a marked reduction in microvilli. Hence tunicamycin has no substantial effect on the molecular distribution of at least some cell surface antigens. Analysis of iodinated cell surface components showed that two components of mol, wt <68 000 and >165 000 were inhibited by tunicamycin. Whereas embryos in the control group underwent compaction and blastulation, those in the experimental group remained uncompacted, although cleavage continued to about the 32-cell stage. However, some embryos initially underwent partial compaction but later decompacted in the presence of tunicamycin; numerous adherens and possibly a few gap junctions were also detected between blastomeres. We suggest that a number of cell surface antigens including N-glycosidically linked glycoproteins may be engaged sequentially during compaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号