首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel class of acyl-coenzyme A analogues has been synthesized in which the sulphur atom is replaced by methylene. In contrast to their natural thiolester counterparts these acyl-CH2CoA analogues are stable to hydrolysis. They are good substrates for several enzymes that do not attack the thiolester group (carboxylases, mutases, dehydrogenases, epimerases, etc.) and potent inhibitors for most enzymes that do so. Some of the new insights gained by the use of acyl-CH2CoA are discussed in terms of enzymatic mechanisms.  相似文献   

2.
1. Ethylmalonyl-CoA was found to be a substrate for methylmalonyl-CoA mutase from Propionibacterium shermanii, the product being mainly (2R)-methylsuccinyl-CoA along with some (2S)-diastereoisomer. 2. The relevant 1H-nuclear magnetic resonance signals of methylsuccinic acid and of its dimethyl ester were assigned to the diastereotopic methylene hydrogens using sterospecifically dideuterated specimens of known configuration. 3. [2(-2)H1]Ethylmalonyl-CoA was converted by methylmalonyl-CoA mutase in 2H2O mainly to (2R, 3S)-[3(-2)H1]methylsuccinyl-CoA. No dideuterated product was observed. 4. Starting from (1R)-[1(-2)H1]-ethathanol, (1S)-[1(-2)H1]ethanol and [2H6] ethanol the following deuterated specimens of ethylmalonic acid were synthesised and characterised: (3S)-[3(-2)H1], (3R)-[3(-2)H1] and [3(-2)H2, 4(-2)H3], respectively. 5. Conversion of (3S)-[3(-2)H1]-ethylmalonyl-CoA (70% 2H1 and 2% 2H2 species) on the mutase in water afforded mainly (2R)-[2(-2)H1]methylsuccinyl-CoA along with some (2S)-diastereoisomer. No deuterium loss was observed. 6. Methylmalonyl-CoA mutase converted (3R)-[3(-2)H1]ethylmalonyl-CoA (81% 2H1 and 2% 2H2 species) to the following methylsuccinyl-CoA species: 33% [3(-2)H1], the deuterium being in the threo position with respect to the methyl group; 21% [2(-2)H1]; 46% unlabelled. The ratio of the species with (2R) and (2S) configuration was about 60:40. 7. Reaction of [3(-2)H2, 4(-2)H3]ethylmalonyl-CoA (94.5% [2H5] species) with the mutase gave the following labelled methylsuccinyl-CoA species:53.4% [methyl-2H3, 2(-2)H1, 3(-2)H1], the 3-deuterium being in the threo position with respect to the methyl group; 37.6% [methyl-2H3, 2(-2)H1]; 5% [methyl(-2)H3, 2(-2)H1, 2(-2)H1, 3(-2)H1] the 3-deuterium being in erythro position with respect to the methyl group; 4% [methyl(-2)H3, 3(-2)H1]. The ratio of the species with (2R) and (2S) configuration was about 70:30. 8. Implications of these findings for the mechanism of the rearrangements catalysed by coenzyme B12 are discussed.  相似文献   

3.
Ribonucleotide reductase is an indispensable enzyme for all cells, since it catalyses the biosynthesis of the precursors necessary for both building and repairing DNA. The ribonucleotide reductase class I enzymes, present in all mammals as well as in many prokaryotes and DNA viruses, are composed mostly of two homodimeric proteins, R1 and R2. The reaction involves long-range radical transfer between the two proteins. Here, we present the first crystal structure of a ribonucleotide reductase R1/R2 holocomplex. The biological relevance of this complex is based on the binding of the R2 C terminus in the hydrophobic cleft of R1, an interaction proven to be crucial for enzyme activity, and by the fact that all conserved amino acid residues in R2 are facing the R1 active sites. We suggest that the asymmetric R1/R2 complex observed in the 4A crystal structure of Salmonella typhimurium ribonucleotide reductase represents an intermediate stage in the reaction cycle, and at the moment of reaction the homodimers transiently form a tight symmetric complex.  相似文献   

4.
UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). As in prokaryotic UGMs, the flavin needs to be reduced for the enzyme to be active. Here we present the first eukaryotic UGM structures from Aspergillus fumigatus (AfUGM). The structures are of UGM alone, with the substrate UDP-Galp and with the inhibitor UDP. Additionally, we report the structures of AfUGM bound to substrate with oxidized and reduced flavin. These structures provide insight into substrate recognition and structural changes observed upon substrate binding involving the mobile loops and the critical arginine residues Arg-182 and Arg-327. Comparison with prokaryotic UGM reveals that despite low sequence identity with known prokaryotic UGMs the overall fold is largely conserved. Structural differences between prokaryotic UGM and AfUGM result from inserts in AfUGM. A notable difference from prokaryotic UGMs is that AfUGM contains a third flexible loop (loop III) above the si-face of the isoalloxazine ring that changes position depending on the redox state of the flavin cofactor. This loop flipping has not been observed in prokaryotic UGMs. In addition we have determined the crystals structures and steady-state kinetic constants of the reaction catalyzed by mutants R182K, R327K, R182A, and R327A. These results support our hypothesis that Arg-182 and Arg-327 play important roles in stabilizing the position of the diphosphates of the nucleotide sugar and help to facilitate the positioning of the galactose moiety for catalysis.  相似文献   

5.
The complete chloroplast genome of Gracilariopsis lemaneiformis was recovered from a Next Generation Sequencing data set. Without quadripartite structure, this chloroplast genome (183,013 bp, 27.40% GC content) contains 202 protein‐coding genes, 34 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. Synteny analysis showed plasmid incorporation regions in chloroplast genomes of three species of family Gracilariaceae and in Grateloupia taiwanensis of family Halymeniaceae. Combined with reported red algal plasmid sequences in nuclear and mitochondrial genomes, we postulated that red algal plasmids may have played an important role in ancient horizontal gene transfer among nuclear, chloroplast, and mitochondrial genomes. Substitution rate analysis showed that purifying selective forces maintaining stability of protein‐coding genes of nine red algal chloroplast genomes over long periods must be strong and that the forces acting on gene groups and single genes of nine red algal chloroplast genomes were similar and consistent. The divergence of Gp. lemaneiformis occurred ~447.98 million years ago (Mya), close to the divergence time of genus Pyropia and Porphyra (443.62 Mya).  相似文献   

6.
R D LaReau  V E Anderson 《Biochemistry》1992,31(17):4174-4180
Lactate dehydrogenase catalyzes the stereospecific hydride transfer to and from the re face of the nicotinamide coenzyme. The demonstrated probability of transfer to the si face of less than 2 x 10(-8) indicates that the free energy of any diastereotopic transition state leading to a si transfer must be over 10 kcal/mol greater than the free energy for transfer to or from the re face. The general notion of closed, desolvated active sites suggests the a priori hypothesis that steric hindrance prevents the nicotinamide ring from assuming a conformation that would lead to transfer of the pro-S hydrogen. In this paper we report that the probability of transfer of the pro-S proton is less than 9 x 10(-7) with 3-pyridinealdehyde adenine dinucleotide as coenzyme and less than 4 x 10(-7) during the lactate dehydrogenase catalyzed disproportionation of glyoxylate. Examination of the crystal structure of lactate dehydrogenase further suggests that steric exclusion does not enforce the extreme stereospecificity of the reaction. An electrostatic interaction with the macrodipole associated with the alpha 2F helix is suggested as a potential molecular source of the stereospecificity.  相似文献   

7.
HCHL (hydroxycinnamoyl-CoA hydratase-lyase) catalyses the biotransformation of feruloyl-CoA to acetyl-CoA and the important flavour-fragrance compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and is exploited in whole-cell systems for the bioconversion of ferulic acid into natural equivalent vanillin. The reaction catalysed by HCHL has been thought to proceed by a two-step process involving first the hydration of the double bond of feruloyl-CoA and then the cleavage of the resultant beta-hydroxy thioester by retro-aldol reaction to yield the products. Kinetic analysis of active-site residues identified using the crystal structure of HCHL revealed that while Glu-143 was essential for activity, Ser-123 played no major role in catalysis. However, mutation of Tyr-239 to Phe greatly increased the K(M) for the substrate ferulic acid, fulfilling its anticipated role as a factor in substrate binding. Structures of WT (wild-type) HCHL and of the S123A mutant, each of which had been co-crystallized with feruloyl-CoA, reveal a subtle helix movement upon ligand binding, the consequence of which is to bring the phenolic hydroxyl of Tyr-239 into close proximity to Tyr-75 from a neighbouring subunit in order to bind the phenolic hydroxyl of the product vanillin, for which electron density was observed. The active-site residues of ligand-bound HCHL display a remarkable three-dimensional overlap with those of a structurally unrelated enzyme, vanillyl alcohol oxidase, that also recognizes p-hydroxylated aromatic substrates related to vanillin. The data both explain the observed substrate specificity of HCHL for p-hydroxylated cinnamate derivatives and illustrate a remarkable convergence of the molecular determinants of ligand recognition between the two otherwise unrelated enzymes.  相似文献   

8.
9.
Ketopantoate reductase (KPR, EC 1.1.1.169) catalyzes the NADPH-dependent reduction of ketopantoate to pantoate on the pantothenate (vitamin B(5)) biosynthetic pathway. The Escherichia coli panE gene encoding KPR was cloned and expressed at high levels as the native and selenomethionine-substituted (SeMet) proteins. Both native and SeMet recombinant proteins were purified by three chromatographic steps, to yield pure proteins. The wild-type enzyme was found to have a K(M)(NADPH) of 20 microM, a K(M)(ketopantoate) of 60 microM, and a k(cat) of 40 s(-1). Regular prismatic KPR crystals were prepared using the hanging drop technique. They belonged to the tetragonal space group P4(2)2(1)2, with cell parameters: a = b = 103.7 A and c = 55.7 A, accommodating one enzyme molecule per asymmetric unit. The structure of KPR was determined by the multiwavelength anomalous dispersion method using the SeMet protein, for which data were collected to 2.3 A resolution. The native data were collected to 1.7 A resolution and used to refine the final structure. The secondary structure comprises 12 alpha-helices, three 3(10)-helices, and 11 beta-strands. The enzyme is monomeric and has two domains separated by a cleft. The N-terminal domain has an alphabeta-fold of the Rossmann type. The C-terminal domain (residues 170-291) is composed of eight alpha-helices. KPR is shown to be a member of the 6-phosphogluconate dehydrogenase C-terminal domain-like superfamily. A model for the ternary enzyme-NADPH-ketopantoate ternary complex provides a rationale for kinetic data reported for specific site-directed mutants.  相似文献   

10.
Despite numerous studies considering DNA as a primary target of cisplatin attack, this work is the first to show the pure effect of cisplatin on the process of tubulin assembly/disassembly in vitro. When platinated, tubulin does not assemble into microtubules (direct electron microscopic studies). In place of them, highly stable and inert circled rings arise. Such tubulin aggregates are unable to participate in the process of chromosome separation during the mitosis, thus blocking cell division in living cells, which is a direct evidence of cisplatin antitumor activity. Cisplatin attack on tubulin causing blockage of tubulin assembly occurs via a two-step binding to GTP in the GTP center of tubulin ((195)Pt, (31)P NMR studies). The calculated binding rates are close to those reported in cisplatin-DNA interactions. The mechanism of cisplatin attack on tubulin is proposed.  相似文献   

11.
Leaf senescence involves lipid droplet (LD) degradation that produces toxic fatty acids, but little is known about how the toxic metabolites are isolated from the rest of the cellular components. Our ultramicroscopic characterization of cytosolic LD degradation in central vacuole-absent cells and central vacuole-containing cells of senescent watermelon leaves demonstrated two degradation pathways: the small vacuole-associated pathway and the central vacuole-associated pathway. This provided an insight into the subcellular mechanisms for the isolation of the fatty acids derived from LDs. The central vacuole-containing cells, including mesophyll cells and vascular parenchyma cells, adopted the central vacuole-associated pathway, indicated by the presence of LDs in the central vacuole, which is believed to play a crucial role in scavenging toxic metabolites. The central vacuole-absent intermediary cells, where senescence caused the occurrence of numerous small vacuoles, adopted the small vacuole-associated pathway, evidenced by the occurrence of LDs in the small vacuoles. The assembly of organelles, including LDs, small vacuoles, mitochondria and peroxisome-like organelles, occurred in the central vacuole-absent intermediary cell in response to leaf senescence.  相似文献   

12.

Background  

Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum nanoparticles on the microbial biomass. Some properties of Pt(IV) adsorption and reduction by resting cells of Bacillus megatherium D01 biomass have once been investigated, still the mechanism active in the platinum biosorption remains to be seen and requires further elucidating.  相似文献   

13.

Background

Fluorescent protein (FP)-based biosensors based on the principle of intramolecular Förster resonance energy transfer (FRET) enable the visualization of a variety of biochemical events in living cells. The construction of these biosensors requires the genetic insertion of a judiciously chosen molecular recognition element between two distinct hues of FP. When the molecular recognition element interacts with the analyte of interest and undergoes a conformational change, the ratiometric emission of the construct is altered due to a change in the FRET efficiency. The sensitivity of such biosensors is proportional to the change in ratiometric emission, and so there is a pressing need for methods to maximize the ratiometric change of existing biosensor constructs in order to increase the breadth of their utility.

Results

To accelerate the development and optimization of improved FRET-based biosensors, we have developed a method for function-based high-throughput screening of biosensor variants in colonies of Escherichia coli. We have demonstrated this technology by undertaking the optimization of a biosensor for detection of methylation of lysine 27 of histone H3 (H3K27). This effort involved the construction and screening of 3 distinct libraries: a domain library that included several engineered binding domains isolated by phage-display; a lower-resolution linker library; and a higher-resolution linker library.

Conclusion

Application of this library screening methodology led to the identification of an optimized H3K27-trimethylation biosensor that exhibited an emission ratio change (66%) that was 2.3 × improved relative to that of the initially constructed biosensor (29%).  相似文献   

14.
Chromosome data are fundamental in evolution. However, there has been no attempt to synthesize and evaluate the significance of such information from a phylogenetic perspective in the giant genus Solanum, which was the aim of this work. New and published information of the main cytotaxonomic features (chromosome number, polyploidy, total length of the haploid complement, mean chromosome length, mean arm ratio, karyotype formula, nuclear DNA amount, number/position of rDNA sites) was compiled and mapped onto an embracing Solanaceae phylogeny, performing Ancestral States Reconstruction. There were 506 Solanum species with chromosome counts (49.7% from an estimated total of 1,018 spp.), with x?=?12 being the most frequent number (97%). Species with karyotypes represent 18.8%, while 8% have been studied with any molecular cytogenetic technique. Chromosome characters showed transitions associated with supported nodes, some of which have undergone fewer transitions than others. The common ancestor of all Solanum was a diploid with 2n?=?24, a karyotype with st and/or t chromosomes, 2C DNA content of 1–1.2 pg, one locus of 18–5.8–26S rDNA and one of 5S, both loci being asyntenic. The chromosomal variables behave as homoplastic, with reversions in all branches. The analysed characters were sorted from more to less conserved: asynteny of rDNA loci; number of sites of 18–5.8–26S; chromosome number; karyotype formula; number of 5S loci. This pattern of chromosomal evolution distinguishes Solanum from closely related genera and from genera from other families with a similar number of species.  相似文献   

15.
Wu M  Reuter M  Lilie H  Liu Y  Wahle E  Song H 《The EMBO journal》2005,24(23):4082-4093
Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.  相似文献   

16.
Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.  相似文献   

17.
Methylmalonyl-CoA mutase is an adenosylcobalamin-dependent enzyme that catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. This reaction results in the interchange of a carbonyl-CoA group and a hydrogen atom on vicinal carbons. The crystal structure of the enzyme reveals the presence of an aromatic cluster of residues in the active site that includes His-244, Tyr-243, and Tyr-89 in the large subunit. Of these, His-244 is within hydrogen bonding distance to the carbonyl oxygen of the carbonyl-CoA moiety of the substrate. The location of these aromatic residues suggests a possible role for them in catalysis either in radical stabilization and/or by direct participation in one or more steps in the reaction. The mechanism by which the initially formed substrate radical isomerizes to the product radical during the rearrangement of methylmalonyl-CoA to succinyl-CoA is unknown. Ab initio molecular orbital theory calculations predict that partial proton transfer can contribute significantly to the lowering of the barrier for the rearrangement reaction. In this study, we report the kinetic characterization of the H244G mutant, which results in an acute sensitivity of the enzyme to oxygen, indicating the important role of this residue in radical stabilization. Mutation of His-244 leads to an approximately 300-fold lowering in the catalytic efficiency of the enzyme and loss of one of the two titratable pK(a) values that govern the activity of the wild type enzyme. These data suggest that protonation of His-244 increases the reaction rate in wild type enzyme and provides experimental support for ab initio molecular orbital theory calculations that predict rate enhancement of the rearrangement reaction by the interaction of the migrating group with a general acid. However, the magnitude of the rate enhancement is significantly lower than that predicted by the theoretical studies.  相似文献   

18.
An association study was carried out to examine the influence of methylmalonyl-CoA mutase (MUT) polymorphisms on the susceptibility of a well-studied wild boar population from southern Spain to develop bovine tuberculosis (bTB). To this end, we examined polymorphisms at a closely linked dinucleotide microsatellite flanking exon 2 of the MUT gene in 37 wild boars with bTB and 36 non-infected individuals. The microsatellite showed low polymorphism in the studied population, with only three alleles (MUTm-A, MUTm-B and MUTm-C) found, in contrast to the 11 alleles previously reported for domestic pigs. Our case-control study showed that the MUTm-B allele was associated with disease in a dominant pattern (odds ratio = 3.36; 95% CI = 1.05-10.72; P = 0.04), while the MUTm AA genotype appeared to have a protective effect against bTB infection (odds ratio = 4.33; 95% CI = 1.20-14.96; P = 0.02). Interestingly, infected wild boars heterozygous for MUTm AB are at an advantage (11-fold) to contain the systemic spread of the disease when compared to other genotypes, implying that a balanced polymorphism may be present in the population. These results strengthen previous observations regarding the importance of the MUT gene on bTB resistance in wild boars and indicate that polymorphisms at this locus will influence the risk of acquiring and maintaining bTB in the studied population.  相似文献   

19.
Defibrotide is a polydeoxyribonucleotide sodium salt with antithrombotic properties. These properties have been attributed to its profibrinolytic activity [increase of tissue plasminogen activator (t-PA) activity, concomitant decrease of that of plasminogen activator inhibitor (PAI)], but there could conceivably be other factor(s). To look for these, we studied Defibrotide in a thrombosis model (pulmonary thromboembolism in mice) in which free radicals play a pivotal role. Defibrotide was found to be active after both intravenous and oral administration. Defibrotide behaved in vitro like a scavenger of H2O2 but not of O2.- in cell-free systems. Defibrotide added in vitro to cellular systems decreased the stimulated release of beta-glucuronidase from polymorphonuclear cells (PMNs), the luminol chemiluminescence induced by oxygen species generated by stimulated PMNs and the generation of O2.- from stimulated macrophages. We think that the antithrombotic activity of Defibrotide is based on other factor(s) in addition to profibrinolytic activity, i.e., some scavenger activity and desensitization of cells involved in thrombus formation must also be taken into account.  相似文献   

20.
Contrary to common protease substrates, the hydrolysis of 4-guanidinophenyl esters of the Boc-Xaa-OGp type by trypsin and trypsin-like proteases performs easily and independently of the structure and chirality of the acyl moiety. The hydrolysis of this new class of substrate mimetics, previously called inverse substrates, is enabled by the highly specific leaving group. However, the mechanism cannot be explained on the basis of the conventional binding model which defines the interactions between the protease and its substrate. Hydrolysis and aminolysis kinetics, protein-ligand docking, and molecular dynamics studies have been carried out in order to get insight into the catalytic mechanism which holds for these substrate mimetics. The experimental and theoretical results obtained for the serine protease trypsin suggest a novel extended kinetic model. It explains the hydrolysis of these types of protease substrates and accounts for the structural consequences for their aminolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号