首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal changes in several forms of nitrogen were investigated in the evergreen chamaephyte Pachysandra terminalis Sieb. et Zucc. growing in temperate evergreen coniferous forest. After plants sprouted new shoots, nitrogen accumulated largely as proteins in the leaves from summer to late autumn and, additionally, during a short spring period in the following year. Proteins accumulated in the overwintered leaves decreased markedly in summer, indicating that they were used for new shoot growth. A similar change was found in Fraction 1 protein. This is consistent with the seasonal changes in photosynthetic capacity and carboxylation efficiency observed in previous studies. The allocation of nitrogen to Fraction 1 protein increased in the spring, presumably to utilize better the relatively high light intensity at the forest floor before leaf expansion of the understory deciduous plants. In contrast to protein nitrogen, soluble nitrogen was present largely in stems and rhizomes. Aspargine was the major component of the amino acid pool in all organs throughout the year, especially in stems in summer. Since asparagine has the highest N:C ratio (2N:4C), an amino acid pool dominated by asparagine is economic in the use of carbon and advantageous for the carbon-limited environment of the forest understory.  相似文献   

2.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

3.
The free amino acid fraction, representing the most importantnitrogen store in the overwintering below ground plant partsof Urtica dioica, consisted mainly (up to 80%) of asparagineand arginine. While asparagine was dominant in rhizomes, upto one year old, argrnine was specifically accumulated in theolder rhizomes and roots. In spring first the nitrogen storedin asparagine and with a delay of about three weeks that inarginine was mobilized and translocated to the rapidly growingshoots. Proteins may function as nitrogen store too, in particularin the case of the seeds. In the below ground organs, however,a special storage protein, rich in amides and/or arginine, whichwould correspond to the large quantities of these amino acidsin the overwintering organs, could not be detected. (Received September 3, 1984; Accepted November 2, 1984)  相似文献   

4.
马玉心  蔡体久  宋丽萍  喻晓丽 《生态学报》2007,27(11):4596-4602
研究了自然生境下生长的兴安鹿蹄草(Pyrola dahurica(H.Andr.)Kom.)根状茎及叶片中渗透调节物质、膜脂过氧化产物在雪盖前后的变化。结果表明,在雪盖前期(10月1日~12月15日)兴安鹿蹄草根状茎及叶片中丙二醛(MDA)含量先增高,尔后下降,翌年春季雪盖后期(3月1日~4月15日)MDA含量明显低于雪盖前期,雪盖前期根状茎的丙二醛(MDA)含量低于叶片,雪盖后期高于叶片。可溶性糖、可溶性蛋白质含量在雪盖前期随着温度的下降而升高,11月中旬达到最大,尔后下降,脯氨酸含量先下降尔后升高。雪盖后期渗透调节物质含量高于雪盖前期,可溶性糖含量随气温的升高而下降,可溶性蛋白质与脯氨酸含量随气温升高而大幅度升高,而且成明显正相关。根状茎的可溶性糖含量在雪盖前期、雪盖后期低于叶片,可溶性蛋白质与脯氨酸含量在雪盖前期、雪盖后期高于叶片。兴安鹿蹄草主要通过渗透调节物质含量的变化来适应雪盖前期及雪盖后期低温环境而安全越冬。  相似文献   

5.
《Aquatic Botany》2001,69(2-4):195-208
The effects of NaCl-salinity on growth, free amino acid and sugar content and composition were assayed in roots, rhizomes and leaves of Phragmites australis (Cav.) Trin. ex Steud. Juvenile plants produced from freshwater clones, were cultured under greenhouse hydroponic conditions for 21 days. Relative growth rates were highest at a salinity level of 0 and 1.5‰, respectively, but decreased significantly at 10‰. All plants cultured at 35‰ salinity died. The osmolality in rhizomes and leaves increased with salinity. The total contents of free amino acids were highest in rhizomes>leaves>roots. In rhizomes, the amino acid content increased significantly up to four-fold from 0 to 10‰ salinity. This increase was caused by up to 200-fold increase of proline and 11-fold increase of glutamine at 10‰, whilst the share of asparagine and glutamate decreased. Leaves showed a similar response to salinity with increasing amino acid contents, and shares of proline and glutamine whereas roots did not react significantly. The contents of sucrose, glucose and fructose were highest in leaves>rhizomes>roots. In rhizomes of all three clones, the sugar contents increased up to 3.5-fold from 1.5 to 10‰ salinity level, but were lower at 1.5‰ versus the control (0‰). Sugar contents were lowest (roots) and highest (leaves) at 1.5‰ salinity. The sugar composition did not vary significantly except for leaves where the fraction of sucrose decreased with increasing salinity level at all three clones from 89.1 to 61.7% of total dissolved sugar (pooled data). The importance of free amino acids and sugars as osmolytes was similar in rhizomes and leaves (13–15% of total osmolality at 10‰). In rhizomes, free amino acids were more important as osmolyte than sugars, while the opposite was true for leaves. Proline contributed up to 2.7% to total osmolality. It is hypothesised that a strong proline accumulation indicates the exceeding of a critical salinity level.  相似文献   

6.
模拟酸雨对杜仲叶氮代谢的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 探讨了春夏两季模拟酸雨对杜仲(Eucommia ulmoides Oliv.)叶氮代谢的几个关键酶及相关物质含量的影响。结果表明:春夏两季杜仲叶硝酸还原酶(NR)、谷酰胺合成酶(GS)、谷氨酸脱氢酶(GDH)和谷丙转氨酶(GPT)活性在一定pH值酸雨胁迫下随酸雨pH值的降低而降低,夏季各酶活性下降率比春季高。杜仲叶可溶性蛋白质和总氮含量春夏两季也随酸雨pH值降低而降低(夏季可溶性蛋白含量与pH值呈正相关),总游离氨基酸含量则随pH值的降低而升高(二者呈负相关)。由此可见,酸雨对杜仲叶氮代谢产生了显著影响。  相似文献   

7.
马玉心  蔡体久  宋丽萍  喻晓丽 《生态学报》2007,27(11):4596-4602
研究了自然生境下生长的兴安鹿蹄草(Pyrola dahurica (H.Andr.) Kom.)根状茎及叶片中渗透调节物质、膜脂过氧化产物在雪盖前后的变化。结果表明,在雪盖前期(10月1日~12月15日)兴安鹿蹄草根状茎及叶片中丙二醛(MDA)含量先增高,尔后下降,翌年春季雪盖后期(3月1日~4月15日)MDA含量明显低于雪盖前期,雪盖前期根状茎的丙二醛(MDA)含量低于叶片,雪盖后期高于叶片。可溶性糖、可溶性蛋白质含量在雪盖前期随着温度的下降而升高,11月中旬达到最大,尔后下降,脯氨酸含量先下降尔后升高。雪盖后期渗透调节物质含量高于雪盖前期,可溶性糖含量随气温的升高而下降,可溶性蛋白质与脯氨酸含量随气温升高而大幅度升高,而且成明显正相关。根状茎的可溶性糖含量在雪盖前期、雪盖后期低于叶片,可溶性蛋白质与脯氨酸含量在雪盖前期、雪盖后期高于叶片。兴安鹿蹄草主要通过渗透调节物质含量的变化来适应雪盖前期及雪盖后期低温环境而安全越冬。  相似文献   

8.
To better understand some basic aspects of the nitrogen economy in Posidonia oceanica and, specifically, the seasonality of the processes of storage, translocation and assimilation, we examined nitrogen speciation into soluble compounds, both inorganic (nitrates, nitrites and ammonium) and organic (free amino acids, FAA, and total soluble protein, TSP), and the nitrogen assimilation potential (through the glutamine synthetase activity measurement) in the leaves, rhizomes and roots of P. oceanica over a 1-year cycle. Only a limited amount of inorganic nitrogen was found, accounting for less than 3.3% of the total nitrogen content, and it was mostly in the form of ammonium. Nitrate and nitrite concentrations were very low, always below 7.2 μmol g−1 dw in annual average. Among the organic soluble fractions, FAAs were the most abundant, accounting for up to 50% of N pools. Rhizomes were the organs in which FAA concentrations reached their maximum value. The leaves showed higher nitrogen assimilation potential than the roots and this assimilation potential was highest during and after the period of maximum leaf growth, probably corresponding to the assimilation of both new and recycled nitrogen. Our results suggest that 5% of the total nitrogen assimilation occurs in roots and 79% in leaves on an annual average. In addition, rhizomes contributed to the total shoot nitrogen assimilation by 32-54% between autumn and spring. Rhizomes appear as key organs in the nitrogen economy of the plant, not only as a major site for nitrogen assimilation but also as an organ for nitrogen storage. This storage, mostly in the form of FAA, occurs during periods of high availability and low demand (winter). This stored nitrogen can supply up to 33% of plant demands during the moment of maximum leaf growth (i.e. late spring).  相似文献   

9.
The changes of total nitrogen and free amino compounds wereexamined in leaves, bark and xylem tissues of olive tree duringa complete annual cycle. In leaves total nitrogen decreasedin spring/early-summer but reached the highest level in autumn-winterperiods. In bark tissues total nitrogen fluctuations were mainlyrelated to the periodical cambial activities. In xylem tissuestotal nitrogen was detected in low levels with no fluctuationsover the year. The free amino compounds in leaves showed seasonalpeaks during the spring and autumn stem elongations, while aconsiderable restriction of their levels was detected in summer.Glutamate, aspartate, proline, alanine, serine and -aminobutyrateare the predominant amino acids detected in leaves. Glutamateand aspartate increased considerably in spring and autumn periodsbut disappeared in summer. Proline remained almost unchangedover the year. Alanine, in addition to the spring and autumnfluctuations, also fluctuated in summer, -aminobutyrate wasdetected at highest levels in winter. In bark tissues, the patternof fluctuations and the composition of the free amino compoundswere similar to those of leaves. In xylem tissues free aminocompounds were detected in high levels over the year exceptfor the drops in spring and summer cambial activity periods.Xylem was the most important reservoir for the readily transportablesoluble nitrogen being accumulated during the maturing of theproduced new xylem. Arginine, glutamine, alanine, glutamate,aspartate, serine, -aminobutyrate and proline are the most prevalentamino compounds in xylem. Arginine and glutamine showed extensiveinterchanges. Arginine increased in autumn while glutamine andalanine showed low levels in the same period. Olive tree (Olea europaea L), amino acids  相似文献   

10.
Drought-stressed flatpea (Lathyrus sylvestris L.) plants from8 to 22 weeks old were analysed for nitrogen, soluble proteinand free amino acids. An increase in nitrogen and free aminoacid concentrations and a decrease in soluble protein levelwere observed in roots of plants up to 16 weeks old. The cumulativeconcentration of free amino acids increased with drought stress.Tissue concentrations of 2, 4-diaminobutyric acid (1.6–2.6%of the dry weight) were highest in leaves. Levels increasedsteadily, nearly doubling, in leaves and stems between weeks10 and 16. Levels in drought-stressed leaves were, on average,11.9% higher than those of controls. Estimated concentrationsof a mixture of 4-aminobutyric acid and an unknown amino acidwere highest in stems, increased in this tissue with age andtended to increase in stems and leaves and decrease in rootsin response to water deficit. Levels of the mixture of homoserineand another unidentified amino acid were not influenced by ageor water status of the plants. Root concentrations of asparagine,arginine, glutamine, aspartate, and another prominent, unidentifiedamino acid increased with plant age and reached a peak at thetime of flowering (14 to 18 weeks). Only the concentration ofthe unknown compound was elevated following drought stress.Concentrations of valine, isoleucine, leucine, phenylalanine,and methionine also increased during this period and were elevatedin drought-stressed plants. Proline levels increased with plantage and drought stress, but proline accounted for only about10% of the total free amino acids in the drought-stressed plants. Key words: 2, 4-Diaminobutyric acid, drought, flatpea  相似文献   

11.
Changes in total nitrogen and free amino acid contents in stemcuttings of Morus alba have been studied. The fresh and dryweights and total nitrogen amounts of the parent stems of cuttingsdecreased initially after cutting. Their increase follows theformation of main roots in cuttings, suggesting that, like carbohydrates,sugars and starch, stored nitrogenous substances are used forsprouting and rooting of cuttings. Amino acids found in stems,roots and shoots are those common in other higher plants withthe exception of pipecolic acid and 5-hydroxypipecolic acid.Significant changes in the levels of asparagine, proline, arginine,-aminobutyric acid and alanine in roots, bark and wood of parentstems were observed during cutting growth, whereas those ofother amino acids remained comparatively constant; the mostpredominant amino acid in the starting materials was proline.while that in the cuttings during growth was asparagine. Theresults suggest that, among free amino acids, asparagine, prolineand arginine play the major part in storage of nitrogen in mulberry.The importance of glut-amine and asparagine in nitrogen metabolismin mulberry has been discussed.  相似文献   

12.
Samples of tracheal sap of Citrus sinensis (L.) Osbeck cv. Washington Navel were taken from field trees throughout the year and the nitrogen composition of the sap was determined. The nitrogenous fraction of the sap was composed mainly of free amino acids (92–97% of total nitrogen) and nitrates throughout the year. Proline was the most abundant amino acid during almost the entire cycle, and its concentration was especially high during the autumn and winter period. Nevertheless, a significant part (40–60%) of the total organic nitrogen was transported as arginine. Total nitrogen as well as amino acids and nitrates were maximal at spring flush. At spring flush and summer flush there was also a diversification of α-amino nitrogen among different amino acids. During the spring flush, nitrates, asparagine and γ-aminobutyric acid in the xylem sap seemed to have a radicular origin, whereas glutamic acid and arginine were released from the surrounding parenchyma. The results suggest a metabolic transformation in the wood parenchyma of nitrogenous compounds coming from the roots (including reduction of nitrates) and a turnover of different nitrogen metabolites between the xylem and surrounding cells.  相似文献   

13.
The seasonal dynamics in content and distribution of N-rich compounds between overwintering organs of Calamagrostis epigeios were examined. Samples were taken both from plants grown in natural conditions and in containers with controlled nutrient supply. There were significant changes in content of nitrate, free amino acids and soluble protein in all investigated plant parts during the course of a year. Amino acids showed both the highest maximum and seasonal fluctuation among the all N compounds observed and, therefore, appear to have a central role in N storage. Their content rises in the autumn, remains stable during winter and declines quickly at the beginning of spring. The most abundant amino acids in the end of winter storage period - asparagine, arginine and glutamine - constituted about 90 % of N in fraction of free amino acids. The portion of N stored in soluble proteins, however, was considerably smaller compare to both amino acids and nitrate. The amount of N stored in rhizomes of C. epigeios was smaller than in roots and stubble base before the onset of spring re-growth. This indicates that roots and stubble base are particularly important for winter N storage in this species.  相似文献   

14.
The concentration of free amino acids and total nitrogen was studied in needles, stems and roots of seedlings of Pinus sylvestris L. for five weeks during the second growth period ("summer"). In one group of seedlings the source/sink relation was disturbed through removal of the terminal buds. The seedlings were cultivated in artificial year-cycles in a climate chamber.
Total nitrogen increased in needles and sterns of intact seedlings in the beginning of the "summer" and decreased during shoot growth. In seedlings, from which the buds had been removed, nitrogen remained at high levels in the primary needles and accumulated in steins and roots. The results are consistent with utilization of nitrogen in older needles and in the stem during shoot elongation.
The pool of free amino acids increased in the beginning of the "summer" and decreased after bud break in primary needles, stems and roots. Arginine and glutamine, in the roots also asparagine, were the dominating amino acids (amides included). Together, these compounds (plus glutamate and aspartate) contributed about 90% of the nitrogen in the amino acid pool in all organs. In primary needles and in the stem, arginine predominated at the end of hardening (75–85% of the amino acid nitrogen). Free amino acids contributed at most ca 10% of the total nitrogen in primary needles, where the ratio of free amino acid nitrogen: total nitrogen was highest at the end of dormancy and in the early "summer". Free amino acids accumulated after bud removal in primary needles and especially in stems and roots. Glutamine became relatively more dominant than arginine in the different organs.
The observations are consistent with the role of arginine and glutamine for storage and transport of nitrogen in conifers. Because of the low concentrations of amino acid nitrogen in the primary needles, arginine is not considered a major nitrogen reserve in needles of Scots pine seedlings.  相似文献   

15.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   

16.
The changes of protein and amino acid contents of young and old leaves from field citrus trees [ Citrus sinensis (L.) Osbeck cv. Washington Navel] were studied throughout the year. the total protein content of old leaves decreased during the spring and summer growths, whereas in young developing leaves it increased rapidly. The end of the spring and summer flushes was followed by a quick recovery of the initial protein content due to a process of reversible senescence. The evolution of SDS-PAGE proteinograms indicated that most of the foliar proteins contributed to the nitrogen mobilization during the spring and summer growth periods. A protein band of molecular weight ca 55,000, probably containing the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, decreased relatively more than the others. The amino acid content of the leaves increased during winter time due to the accumulation of proline, which was mobilized during the spring flush. The possible nitrogen storage function of proline is discussed.  相似文献   

17.
Apple rootstocks M.7 were given either nitrate or ammonium at the end of September. Until the following June, total and protein nitrogen and the composition of the soluble nitrogen fraction were followed in the roots, stem-bark, and new growth. Nitrogen from both sources was readily absorbed in roughly the same amounts. Absorption occurred in the autumn and especially in the following spring. Incorporation of the absorbed nitrogen took place exclusively in the young roots. Arginine and, to a lower degree, asparagine were by far the most abundant of the soluble amino compounds and reached levels far above those in the unfertilized trees. The asparagine/arginine ratio was rather high during the first few weeks after fertilization but then dropped steadily to a low winter level. During May and June there was a gradual decrease to very low levels, especially in the new growth. The data suggest that the absorbed nitrogen is incorporated into asparagine and that arginine is formed from asparagine if the supply of nitrogen exceeds the immediate needs. Throughout the experimental period, ammonium fertilization led to higher values of the asparagine/arginine ratio than did nitrate nutrition. This is explained in terms of an enhanced production of asparagine and a retarded conversion into arginine. It is argued that asparagine is the main translocation compound for nitrogen. The possibility is discussed that, in addition, arginine moves upwards by a process of exchange along the negatively charged walls of the xylem vessels.  相似文献   

18.
Free amino acids in 6-year-old kiwifruit vines [Actinidia deliciosa(A. Chev.) C. F. Liang et A. R. Ferguson] were measured overthe course of 1 year using components obtained from whole-vineharvests. Tissues examined from the perennial structure consistedof the wood and cortex of structural roots, wood and bark ofstem, leader and 1-year-old fruiting canes. Free acids in theannual growth (fine roots, flowers, fruit, leaves and non-fruitingshoots) were also measured. The range of amino acids extracted indicated that kiwifruitconforms to a conventional pattern of nitrogen metabolism. Acidspresent in greatest concentration depended on tissue type andsampling time. In perennial components and fine roots, arginineand glutamine were the predominant species, followed by gamma-aminobutyrate,aspartate, glutamate, alanine and valine. Generally, maximumconcentrations of all free acids were measured in a 10-weekperiod around budbreak. These same acids, plus asparagine, serineand threonine, were also prevalent in annual growth. In leaves,flowers and non-fruiting shoots, concentrations were greatestin the young tissue and declined with age. By contrast, concentrationsof arginine, asparagine and glutamine in fruit peaked approximately10 weeks after anthesis, subsequent to the cell division phaseof growth. During the year, free arginine averaged 44, 48 and 58 % of thetotal N in the fine roots, and the cortex and wood of structuralroots, respectively (the quantity of total N and amino-N inother components of the structural framework was much less thanthat in root tissue). Arginine was the principal N-containingspecies measured in xylem sap vacuum-extracted from 1-year-oldcanes over winter. During the period of vegetative growth, however,glutamine and nitrate were the principal N-transport forms present.The study highlights the importance of the fine root systemas the primary location of nitrogenous reserves in this plantand identifies arginine as the dominant N-storage form. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, amino acid composition, kiwifruit, nitrogen, whole-plant harvesting  相似文献   

19.
Carbohydrate and total nitrogen contents as well as free amino acid (FAA) concentrations were determined in distinct types of rhizomes of two genetically homogeneous stands of reed (Phragmites australis (Cav.) Trin. ex Steudel) differing in morphology, productivity and nutrient supply in order to evaluate the storage capacity of vertical rhizomes and expansion rhizomes. The expansion rhizomes possess significantly higher amounts of FAA and of total nitrogen but similar carbohydrate concentrations in comparison to the vertical rhizomes. However, no significant differences were found for total nitrogen, FAA and total carbohydrates between both investigated stands indicating a comparable storage capacity of rhizomes independent of nutrient availability. Only the composition of the FAA pool varied in the alanine/asparagine ratio probably influenced by the oxygen supply of the rhizome/root system.  相似文献   

20.
WALLACE  W.; PATE  J. S. 《Annals of botany》1967,31(2):213-228
A soluble NADH-dependent nitrate reductase is described forthe shoot system of Xanthium. Young leaves and immature stemtissues contain high levels of the enzyme. They are relativelyrich in free amino acids and amides but store little free nitrate.The specific activity of the enzyme is lower in fully expandedleaves, although these leaves exhibit higher rates of fixationof carbon in photosynthesis than do younger leaves. Neithernitrate nor free amino acids accumulate in the mesophyll ofthe leaf. Older parts of the stem axis accumulate large amountsof soluble nitrogen, almost entirely as free nitrate. Reservesof nitrate in the shoot and root are rapidly depleted if nitrateis removed from the external medium. Nitrate reductase is apparently absent from roots of Xanthium.This finding is supported by analyses of bleeding sap from nitrate-fedplants which show that 95 per cent of the nitrogen exportedfrom roots is present as free nitrate. However, roots are capableof synthesizing and exporting large amounts of amino nitrogenif supplied with reduced nitrogen such as urea or ammonium. A scheme is presented summarizing the main features of the metabolismof nitrate in Xanthium and this is compared with the situationin nitrate-fed plants of the field pea (Pisum arvense L.), aspecies previously shown to be capable of reducing nitrate inits root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号