首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, has resulted in the extinction of frogs, but the distribution of Bd is incompletely known. We trialled the survey protocol for Bd by attempting to systematically map its distribution in Queensland, Australia. Bd was easily detected in known infected areas, such as the Wet Tropics and South East Queensland. It was not detected in bioregions adjacent to, but inland from or to the north of, infected regions: Einasleigh Uplands and Cape York adjacent to the infected Wet Tropics; and Brigalow Belt South adjacent to the infected South East Queensland bioregion. These regions where Bd was not detected have bordered infected regions for between 15 yr (in northern Queensland) and 30 yr (in southern Queensland), and so they define the geographical limits of Bd with regard to the long-term environmental conditions in Queensland. The Gulf Plains, a bioregion distant from infected bioregions, was also negative. Bd was confined to rainforest and bordering habitats, such as wet eucalypt forests. Infections were largely confined to permanent water-associated species, consistent with this being an important cause of this group having the greatest declines. Our data supports biogeographic climatic models that show much of inland and northern Australia to be too hot and dry to support Bd. As there is limited opportunity for Bd to spread further in Queensland, the priority for management is reducing the impact of Bd in affected populations and assisting frogs to disperse into their former distributions. Given that the survey protocol has been applied successfully in Australia it may be useful for mapping the distribution of Bd in other parts of the world.  相似文献   

2.
The emerging amphibian disease chytridiomycosis, which is caused by the fungal pathogen (Batrachochytrium dendrobatidis, Bd), has caused mass mortalities of native amphibian populations globally. There have been no previous studies on the relationships between stress hormones in free-living amphibians and Bd infections. In this study, we measured urinary corticosterone metabolite concentrations and Bd infections within free-living populations of male Stony Creek frog (Litoria wilcoxii) in Queensland, Australia. Prevalence of Bd zoospores from frog skin swabs was quantified using a real-time quantitative PCR technique. A urinary corticosterone enzyme-immunoassay (EIA) was validated using adrenocorticotropic hormone (ACTH) challenge. Urinary corticosterone concentrations of male frogs increased within 1-2 days after ACTH challenge and returned to baseline levels within 3 days post-ACTH injection. None of the frogs showed any rise in urinary corticosterone after saline injections. Individual male frogs showed either low or high baseline corticosterone concentrations. Male frogs identified as positive for Bd infection had significantly higher baseline urinary corticosterone concentrations in comparison to Bd negative male frogs. Urinary corticosterone EIA provides a reliable indication of stress in this frog species and this non-invasive physiological tool can be used to further assess the dynamics of Bd infections and physiological stress responses in other native amphibians.  相似文献   

3.
The African clawed frog Xenopus laevis is by far the most widely used amphibian species in laboratories. In the wild, X. laevis is an asymptomatic carrier of an emerging infectious disease called chytridiomycosis. The vector is the chytrid fungus Batrachochytrium dendrobatidis (Bd), which has devastating effects on wild amphibian populations around the world. The impact of Bd on the metabolism of X. laevis has not been comprehended yet. However, even if asymptomatic, an infection is likely to affect the individual's physiology, immunology, development, reproduction and overall response to stress from a purely medical point of view, which will introduce noise and therefore increase variance within experimental groups of X. laevis. This could have implications on the scientific results from studies using this species. Here, we review the current knowledge on treatments of infected amphibians and propose a hygiene protocol adapted to laboratory populations and amphibian husbandry. Following the presented sanitation guidelines could further prevent the spread of Bd and probably of other amphibian pathogens. The sanitation guidelines will help to reduce the impact of amphibian husbandry on natural populations and must be considered a crucial contribution to amphibian conservation, as today 32% of all amphibians are considered threatened.  相似文献   

4.
Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yavapaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.  相似文献   

5.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is likely the cause of numerous recent amphibian population declines worldwide. While the fungus is generally highly pathogenic to amphibians, hosts express a wide range of responses to infection, probably due to variation among hosts and environmental conditions, but possibly also due to variation in Bd. We investigated variation in Bd by exposing standardized host groups to 2 Bd strains in a uniform environment. All exposed frogs became infected, but subsequent lethal and sub-lethal (weight loss) responses differed among groups. These results demonstrate variation in Bd and suggest variation occurs even at small geographical scales, likely explaining some of the variation in host responses. With lower than expected mortality among infected frogs, we continued our study opportunistically to determine whether or not frogs could recover from chytridiomycosis. Using heat, we cleared infection from half of the surviving frogs, leaving the other half infected, then continued to monitor mortality and weight. Mortality ceased among disinfected frogs but continued among infected frogs. Disinfected frogs gained weight significantly more than infected frogs, to the point of becoming indistinguishable from controls, demonstrating that at least some of the effects of sub-lethal chytridiomycosis on hosts can be non-permanent and reversible.  相似文献   

6.
The chytridiomycete fungus Batrachochytrium dendrobatidis (Bd) colonizes mouthparts of amphibian larvae and superficial epidermis of post-metamorphic amphibians, causing the disease chytridiomycosis. Fungal growth within host cells has been documented by light and transmission electron microscopy; however, entry of the fungus into host cells has not. Our objective was to document how Bd enters host cells in the wood frog Lithobates sylvaticus, a species at high mortality risk for chytridiomycosis, and the bullfrog L. catesbeianus, a species at low mortality risk for chytridiomycosis. We inoculated frogs and documented infection with transmission electron microscopy. Zoospores encysted on the skin surface and produced morphologically similar germination tubes in both host species that penetrated host cell membranes and enabled transfer of zoospore contents into host cells. Documenting fungal and epidermal ultrastructure during host invasion furthers our understanding of Bd development and the pathogenesis of chytridiomycosis.  相似文献   

7.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has resulted in the decline or extinction of approximately 200 frog species worldwide. It has been reported throughout much of North America, but its presence on Prince Edward Island (PEI), on the eastern coast of Canada, was unknown. To determine the presence and prevalence of Bd on PEI, skin swabs were collected from 115 frogs from 18 separate sites across the province during the summer of 2009. The swabs were tested through single round end-point PCR for the presence of Bd DNA. Thirty-one frogs were positive, including 25/93 (27%) green frogs Lithobates (Rana) clamitans, 5/20 (25%) northern leopard frogs L. (R.) pipiens, and 1/2 (50%) wood frogs L. sylvaticus (formerly R. sylvatica); 12 of the 18 (67%) sites had at least 1 positive frog. The overall prevalence of Bd infection was estimated at 26.9% (7.2-46.7%, 95% CI). Prevalence amongst green frogs and leopard frogs was similar, but green frogs had a stronger PCR signal when compared to leopard frogs, regardless of age (p < 0.001) and body length (p = 0.476). Amongst green frogs, juveniles were more frequently positive than adults (p = 0.001). Green frogs may be the most reliable species to sample when looking for Bd in eastern North America. The 1 wood frog positive for Bd was found dead from chytridiomycosis; none of the other frogs that were positive for Bd by PCR showed any obvious signs of illness. Further monitoring will be required to determine what effect Bd infection has on amphibian population health on PEI.  相似文献   

8.
Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea.Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus.In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host epidermis.  相似文献   

9.
10.
Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests.  相似文献   

11.
Effective treatment methods to eliminate infection with Batrachochytrium dendrobatidis (Bd) are required for development of sustainable captive survival assurance populations of amphibians and to reduce the risk of introducing Bd to new locations as part of amphibian trade or reintroduction programs. Treatment with itraconazole baths at 100 mg l-1 is commonly used in captive amphibians, but side effects are observed in some amphibian species and life stages. Naturally occurring outbreaks of chytridiomycosis in Wyoming toads Anaxyrus baxteri and White's tree frogs Litoria caerulea were treated with lower-dose itraconazole baths (e.g. 50 mg l-1 for White's tree frogs) and followed post-treatment with serial Taqman PCR testing to confirm elimination of Bd infection. Post-treatment PCR tests were consistently negative for the presence of Bd and treatment was deemed successful. Although this was not a controlled clinical trial, results suggest that lower doses of itraconazole may be effective for treatment of chytridiomycosis with resulting cost savings to amphibian conservation programs and a potential for a reduction in dose-related side effects from itraconazole treatment. Prospective clinical trials of alternative itraconazole treatment protocols are encouraged.  相似文献   

12.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines worldwide. In vitro laboratory studies and those done on wild populations indicate that Bd grows best at cool temperatures between 17 and 25 degrees C. In the present study, we tested whether moderately elevating the ambient temperature to 30 degrees C could be an effective treatment for frogs infected with Bd. We acquired 35 bullfrogs Rana catesbeiana from breeding facilities and 36 northern cricket frogs Acris crepitans from the wild and acclimated them to either 23 or 26 degrees C for 1 mo. Following the acclimation period, frogs were tested for the presence of Bd using qPCR TaqMan assays. The 12 R. catesbeiana and 16 A. crepitans that tested positive for Bd were subjected to 30 degrees C for 10 consecutive days before returning frogs to their starting temperatures. Post-treatment testing revealed that 27 of the 28 frogs that had tested positive were no longer infected with Bd; only a single A. crepitans remained infected following treatment. This result indicates that elevating ambient temperature to a moderate 30 degrees C can be effective as a treatment for Bd infection in captive amphibians, and suggests that heat may be a superior alternative to antifungal drugs.  相似文献   

13.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   

14.
Batrachochytrium dendrobatidis (Bd), a disease-causing amphibian-specific fungus, is widely distributed in Puerto Rico, but is restricted to elevations above 600 m. The effect of this pathogen in the wild was studied by monitoring Eleutherodactylus coqui and E. portoricensis in 2 upland forests at El Yunque, a site characterized by historic population declines in the presence of chytridiomycosis. We tested a potential synergistic interaction between climate and Bd by measuring prevalence of infection and level of infection per individual sampled (number of zoospores), across the dry and wet seasons for 2 yr (between 2005 and 2007). Infection levels in adult frogs were significantly higher during the dry season in both species studied, suggesting a cyclic pattern of dry/ cool-wet/warm climate-driven synergistic interaction. These results are consistent with ex situ experiments in which E. coqui infected with Bd were more susceptible to chytridiomycosis when subjected to limited water treatments resembling drought. Long-term data on the prevalence of Bd in the populations studied versus intensity of infection in individual frogs provided contradictory information. However, the conflicting nature of these data was essential to understand the status of Bd in the species and geographical area studied. We conclude that in Puerto Rico, Bd is enzootic, and vulnerability of eleutherodactylid frogs to this pathogen is related to seasonal climatic variables. Our data suggest a mechanism by which this disease can persist in tropical frog communities without decimation of its hosts, but that complex interactions during severe droughts may lead to population crashes.  相似文献   

15.
The emerging infectious disease chytridiomycosis has been implicated in declines and disappearances of amphibian populations around the world. However, susceptibility to infection and the extent of pathological effects of infection vary among hosts, and species with life histories that include parental care of direct-developing terrestrial eggs may tend to be less susceptible. We examined samples from a total of 595 individuals of 9 species of direct-developing Australian frogs in the family Microhylidae for the presence of infection by Batrachochytrium dendrobatidis (Bd). Between 1995 and 2004, 336 samples were collected; 102 of these were analysed histologically and 234 were tissues stored in alcohol, which were examined using diagnostic quantitative PCR (qPCR). Swab samples were collected from 259 frogs from 2005 to 2008 and were examined using qPCR. None of the 595 samples showed evidence of infection by Bd. If these data are regarded as a single sample representative of Australian microhylids, the upper 95% binomial confidence limit for the prevalence of infection in frogs of this family is 0.0062 (<1%). Even if only the data from the more powerful diagnostic qPCR tests are used, the upper 95% confidence limit for prevalence is 0.0075 (<1%). Our data suggest that Australian microhylids have a very low prevalence of infection by Bd in nature, and thus are either not susceptible, or are only slightly susceptible, to chytridiomycosis. This could be due solely to, or in combination with, low rates of transmission and to factors that promote resistance to infection, including ecological or behavioural characteristics, innate immune functions such as antimicrobial skin peptides, or antimicrobial symbionts in skin flora.  相似文献   

16.
The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four?years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9?% in A. elegans (in 2010) and 52?% in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.  相似文献   

17.
Chytridiomycosis is a lethal disease of amphibians associated with mass mortalities and population declines worldwide. An accurate, non-invasive technique for detecting chytridiomycosis is urgently needed to determine the current geographical distribution of the disease, and its prevalence in wild amphibian populations. Herein we evaluate a recently devised, rapid, non-invasive, swab-PCR assay. We sampled 101 wild juvenile Mixophyes iteratus by both a skin swab for use in PCR analysis, and a toe-clip for examination by histological methods. The swab-PCR assay detected chytridiomycosis infection in a minimum of 14.9% of frogs, whereas histology detected infection in no more than 6.9% of frogs. We conclude that the swab-PCR technique is the more reliable means of detecting chytridiomycosis in wild amphibians, and that it precludes the need for toe-clipping as a means of sampling for the presence of the disease in future surveys. Further, we document a significant negative relationship between a juvenile frog's snout-vent length and its likelihood of being infected with the disease.  相似文献   

18.
This paper describes an outbreak of chytridiomycosis affecting a group of Dendrobates tinctorius, a Neotropical anuran species, confiscated from the illegal wildlife trade and housed in a private zoo in Brazil as part of an ex situ breeding program. We examined histological sections of the skin of 30 D. tinctorius and 20 Adelphobates galactonotus individuals. Twenty D. tinctorius (66.7%) and none of the A. galactonotus were positive for Batrachochytrium dendrobatidis (Bd). Multiple development stages of Bd infection were observed. The reasons for the inter-specific difference in the rate of infection could not be determined, and further studies are advised. Because the examined population consisted of confiscated frogs, detailed epidemiological aspects could not be investigated, and the source of the fungus remains uncertain. The existence of ex situ amphibian populations is important for protecting species at higher risk in the wild, and ex situ amphibian conservation and breeding programs in Brazil may be established using confiscated frogs as founders. However, this paper alerts these programs to the urgency of strict quarantine procedures to prevent the introduction of potential pathogens, particularly Bd, into ex situ conservation programs.  相似文献   

19.
The emergence of amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd) has led to the decline and extinction of numerous amphibian species. Multiple studies have observed links between climatic factors and amphibian declines apparently caused by Bd. Using outdoor experimental mesocosms, we tested the response of red‐legged frog (Rana aurora) tadpoles to increased variation in temperature, a component of climate linked to amphibian declines, and Bd exposure. We included tadpoles of a sympatric competitor species, Pacific chorus frog (Pseudacris regilla), in a fully factorial design to test the effects of Bd and temperature on interspecific interactions. We found that higher variation in temperature had numerous effects in mesocosms, including interacting with Bd presence to decrease the condition of R. aurora, shifting the relative performance of competing P. regilla and R. aurora, and accelerating the development of P. regilla relative to R. aurora. Our results demonstrate that increased variation in temperature can affect amphibians in multiple ways that will be contingent on ecological context, including the presence of Bd and competing species.  相似文献   

20.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号