首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of novel splice variants of ARNT and ARNT2 in the rat   总被引:1,自引:0,他引:1  
Most of the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated by the bHLH/PAS protein AH receptor (AHR). For regulation of gene activities, AHR dimerizes with another member of the bHLH/PAS protein family, AHR nuclear translocator (ARNT). A substrain of Wistar rats, Han/Wistar (Kuopio) (H/W), is about 1000-fold more resistant to the acute lethality of TCDD than other strains, exemplified by Long-Evans (Turku/AB) (L-E); the LD50 values for these two strains are >9600 and 10-20 microg/kg, respectively. Previous studies have demonstrated that the major reason for the exceptional TCDD resistance of H/W rats lies in their AHR, which is remodeled at its C-terminal transactivation domain, but there appears to be another contributing gene product. The present study set out to compare the primary structure of ARNT and the closely related ARNT2 proteins in H/W and L-E rats by cDNA cloning. To our surprise, we found several isoforms of these proteins only one of which has previously been reported in rats. All of the isoforms appeared to arise from alternative splicing. For ARNT, isoforms with deletions at exon 5, 3(') end of exon 6 or 5(') end of exon 11, or with an insertion at 5(') end of exon 20 were discovered. There was also interindividual variation in the number of glutamine-encoding codons at 5(') end of exon 16. The most exciting new variant was revealed for ARNT2, because the insertion found at 5(') end of exon 19 disrupts the functionally critical transactivation domain in the protein, implying a dominant negative role for this isoform. The relative expression levels of the variants did not differ in the two rat strains, nor did TCDD modify the ratios, suggesting that the variants do not contribute to TCDD resistance. However, the regulation of ARNT and ARNT2 activities may be more intricate than previously assumed.  相似文献   

2.
3.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs). Bony fishes exposed to PHAHs exhibit a wide range of developmental defects. However, functional roles of fish AHR are not yet fully understood, compared with those of mammalian AHRs. To investigate the potential sensitivity to PHAHs toxic effects, an AHR cDNA was initially cloned and sequenced from red seabream (Pagrus major), an important fishery resource in Japan. The present study succeeded in identifying two highly divergent red seabream AHR cDNA clones, which shared only 32% identity in full-length amino acid sequence. The phylogenetic analysis revealed that one belonged to AHR1 clade (rsAHR1) and another to AHR2 clade (rsAHR2). The rsAHR1 encoded a 846-residue protein with a predicted molecular mass of 93.2 kDa, and 990 amino acids and 108.9 kDa encoded rsAHR2. In the N-terminal half, both rsAHR genes included bHLH and PAS domains, which participate in ligand binding, AHR/ARNT dimerization and DNA binding. The C-terminal half, which is responsible for transactivation, was poorly conserved between rsAHRs. Quantitative analyses of both rsAHRs mRNAs revealed that their tissue expression profiles were isoform-specific; rsAHR1 mRNA expressed primarily in brain, heart, ovary and spleen, while rsAHR2 mRNA was observed in all tissues examined, indicating distinct roles of each rsAHR. Furthermore, there appeared to be species-differences in the tissue expression profiles of AHR isoforms between red seabream and other fish. These results suggest that there are isoform- and species-specific functions in piscine AHRs.  相似文献   

4.
5.
6.
7.
8.
Dioxins are persistent and ubiquitous environmental poisons that become enriched in the food chain. Besides being acutely lethal, the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to many animal species. We have previously found that developing teeth of children may be sensitive to environmental dioxins via their mother's milk and that rat and mouse teeth are dioxin-sensitive throughout their development. The aryl hydrocarbon receptor (AHR) together with the AHR nuclear translocator (ARNT) protein is believed to mediate the toxic effects of dioxins. To study the potential involvement of the AHR-ARNT pathway in the dental toxicity of TCDD, we analysed the expression of AHR and ARNT by in situ hybridization and immunohistochemistry in developing mouse teeth. AHR mRNA first appeared in the epithelium of E12 first molar tooth buds and both proteins were weakly expressed in the bud. After cytodifferentiation the expression was up regulated and became intense in secretory odontoblasts and ameloblasts. The coexpression of AHR and ARNT during early tooth development as well as during the information and mineralization of the dental matrices is suggestive of the AHR-ARNT pathway as a mediator of dental toxicity of TCDD.  相似文献   

9.
In order to further establish zebrafish as a vertebrate model for studying the mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity it is necessary to characterize the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AhR/ARNT) signaling pathways in this species. In this study, three zfARNT2 cDNAs were isolated, expressed, and characterized and named zfARNT2b, zfARNT2c, and zfARNT2a. zfARNT2b, zfARNT2c, and zfARNT2a encode proteins with theoretical molecular weights of 81, 79, and 45 kDa, respectively. zfARNT2b and zfARNT2a proteins are identical over the first 403 amino acids but differ in their C-terminal domains as a result of alternative mRNA splicing. zfARNT2c is nearly identical to zfARNT2b, with the exception of an in frame 15 amino acid deletion adjacent to the basic region of zfARNT2c. Using quantitative RT-PCR methods the tissue distribution of each zfARNT2 isoform was determined. In COS-7 cells expressing zfARNT2b and zfAhR2, 10 nM TCDD causes a nine-fold induction of a dioxin responsive reporter gene. In COS-7 cells expressing zfARNT2a or zfARNT2c, TCDD does not induce reporter gene expression. In contrast, all three zfARNT2 proteins induce reporter gene activity under control of hypoxia responsive elements when cotransfected with the zebrafish endothelial specific PAS protein 1. DNA gel shift analysis suggests that the decreased function of zfARNT2a is due to inefficient binding of zfARNT2a/zfAhR2 complexes to dioxin responsive elements. These results also indicate that alternative mRNA splicing results in formation of ARNT proteins with distinct functional properties.  相似文献   

10.
11.
12.
The aryl hydrocarbon receptor (AHR) mediates numerous toxic effects following exposure of vertebrate animals to certain aromatic environmental contaminants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To investigate possible effects of TCDD on invertebrates, a cDNA encoding an AHR homologue was cloned from the soft-shell clam, Mya arenaria. The predicted amino acid sequence contains regions characteristic of vertebrate AHRs: basic helix-loop-helix (bHLH) and PER-ARNT-SIM (PAS) domains and a glutamine-rich region. Phylogenetic analysis shows that the clam AHR sequence groups within the AHR subfamily of the bHLH-PAS family, in a clade containing AHR homologues from Drosophila melanogaster and Caenorhabditis elegans. AHR mRNA expression was detected in all tissue types tested: adductor muscle, digestive gland, foot, gill, gonad, mantle, and siphon. The in vitro-expressed clam AHR exhibited sequence-specific interactions with a mammalian xenobiotic response element (XRE). Velocity sedimentation analysis using either in vitro-expressed clam AHR or clam cytosolic proteins showed that this AHR homologue binds neither [(3)H]TCDD nor [(3)H]beta-naphthoflavone (BNF). Similarly, in vitro-expressed D. melanogaster and C. elegans AHR homologues lacked specific binding of these compounds. Thus, the absence of specific, high-affinity binding of the prototypical AHR ligands TCDD and BNF, is a property shared by known invertebrate AHR homologues, distinguishing them from vertebrate AHRs. Comparative studies of phylogenetically diverse organisms may help identify an endogenous ligand(s) and the physiological role(s) for this protein.  相似文献   

13.
14.
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a basic helix-loop-helix (bHLH) protein that contains a Per-Arnt-Sim (PAS) domain. ARNT heterodimerizes in vivo with other bHLH PAS proteins to regulate a number of cellular activities, but a physiological role for ARNT homodimers has not yet been established. Moreover, no rigorous studies have been done to characterize the biochemical properties of the bHLH domain of ARNT that would address this issue. To begin this characterization, we chemically synthesized a 56-residue peptide encompassing the bHLH domain of ARNT (residues 90-145). In the absence of DNA, the ARNT-bHLH peptide can form homodimers in lower ionic strength, as evidenced by dynamic light scattering analysis, and can bind E-box DNA (CACGTG) with high specificity and affinity, as determined by fluorescence anisotropy. Dimers and tetramers of ARNT-bHLH are observed bound to DNA in equilibrium sedimentation and dynamic light scattering experiments. The homodimeric peptide also undergoes a coil-to-helix transition upon E-box DNA binding. Peptide oligomerization and DNA affinity are strongly influenced by ionic strength. These biochemical and biophysical studies on the ARNT-bHLH reveal its inherent ability to form homodimers at concentrations supporting a physiological function and underscore the significant biochemical differences among the bHLH superfamily.  相似文献   

15.
16.
17.
18.
19.
研究谷氨酰半胱氨酸合成酶催化亚单位(GCLC)基因上游调控序列中2个AHR/ARNT元件的功能,从而了解γ-谷氨酰半胱氨酸合成酶(γ-GCS)基因转录调节特征.分别构建缺失2个位点AHR/ARNT元件的GCLC基因上游近端序列的萤光素酶报道基因载体以及含有2个AHR/ARNT元件核心序列的萤光素酶报道基因载体.转染大鼠支气管上皮细胞(RTE),比较检测野生与缺失报道载体的基因转录调控效率;利用电泳迁移率变动实验(EMSA)和超级迁移率变动实验检测AHR/ARNT元件与AHR以及ARNT因子的特异性结合;通过转染AHR因子真核表达质粒进一步确定AHR/ARNT元件与AHR结合在GCLC基因表达中的最终作用.结果显示,相比其野生序列,缺失AHR/ARNT元件(-1 090~-1 085)和双缺失AHR/ARNT元件(-1 090~-1 085,-215~-210)的GCLC上游调控序列报道载体在RTE显著提高萤光素酶表达(均P<0.05),而缺失AHR/ARNT元件(-215~-210)则未见显著影响(P>0.05); 独立AHR/ARNT元件(-1 090~-1 085)具有转录促进作用(P<0.05)而独立AHR/ARNT元件(-215~-210)无明显影响(P>0.05).转染CMV2-AHR能够抑制野生型和缺失型报道载体的萤光素酶表达(P<0.05).EMSA证实GCLC基因上游调控区域的2个AHR/ARNT元件均有核蛋白结合,并且超级迁移率变动实验显示结合的蛋白主要含有转录因子AHR以及ARNT.因此,2个AHR/ARNT元件均可以与异源二聚体AHR/ARNT结合,AHR/ARNT元件(-1 090~-1 085)是GCLC基因中重要的抑制元件.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号