共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract We investigated the expression of important Actinobacillus pleuropneumoniae surface polysaccharides, namely, capsular polysaccharides (CPS) and lipopolysaccharides (LPS), after growth under iron-restricted conditions. Iron restriction did not seem to affect the production of CPS, as determined by labelling with a monoclonal antibody (mAb) against the serotype l K-antigen and flow cytometry analysis, and also as determined by electron microscopy. SDS-PAGE revealed that the LPS profiles of these cells were also unaffected by iron restriction. Using flow cytometry analysis, however, we observed that binding of mAb against serotype 1 O-antigen was altered in cells of A. pleuropneumoniae serotype l reference strain (4074) grown under iron-restricted conditions. This strain exhibited two subpopulations with distinct patterns of reactivity with the mAb against the O-antigen. When strain 4074 was grown under iron-restricted conditions, a shift from one cell subpopulation (moderately fluorescent) to another cell subpopulation (highly fluorescent, thus binding more antibodies) was observed. Our results indicate that growth of A. pleuropneumoniae serotype l under iron-restricted conditions did not seem to affect CPS production, but might alter, at least for the reference strain, the expression of LPS. 相似文献
2.
Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. 总被引:2,自引:3,他引:2 下载免费PDF全文
The antibacterial peptide toxin colicin V uses a dedicated signal sequence-independent system for its secretion in Escherichia coli and requires the products of three genes, cvaA, cvaB, and tolC. As a member of the membrane fusion protein family, CvaA is supposed to form a bridge that connects the inner and outer membranes via interaction with CvaB and TolC, respectively. In this study, we investigated the possible interaction of these proteins. When CvaA or CvaB was absent, the corresponding amount of CvaB or CvaA, respectively, was decreased, and the amounts of both proteins were reduced when TolC was depleted. Translational lacZ fusions showed that TolC did not affect the synthesis of either CvaA-beta-galactosidase or CvaB-beta-galactosidase, and CvaA or CvaB did not affect the synthesis of CvaB-beta-galactosidase or CvaA-beta-galactosidase, respectively. However, the stabilities of CvaA and CvaB proteins were affected by the absence of one another and by that of TolC. The instability of CvaA was more severe in TolC-depleted cells than in CvaB-depleted cells. On the other hand, CvaB was less stable in the absence of CvaA than in the absence of TolC. In addition, using a cross-linking reagent, we showed that CvaA directly interacts with both CvaB and TolC proteins. Taken together, these data support the hypothesized structural role of CvaA in connecting CvaB and TolC. 相似文献
3.
The antibacterial protein toxin colicin V is secreted from Escherichia coli cells by a dedicated export system that is a member of the multicomponent ATP-binding cassette (ABC) transporter family. At least three proteins, CvaA, CvaB, and TolC, are required for secretion via this signal sequence-independent pathway. In this study, the subcellular location and transmembrane organization of membrane fusion protein CvaA were investigated. First, a series of CvaA-alkaline phosphatase (AP) protein fusions was constructed. Inner and outer membrane fractionations of cells bearing these fusions indicated that CvaA is inner membrane associated. To localize the fusion junctions, the relative activities of the fusion proteins, i.e., the amounts of phosphatase activity normalized to the rate of synthesis of each protein, as well as the stability of each fusion, were determined. These results indicated that all of the fusion junctions occur on the same side of the inner membrane. In addition, the relative activities were compared with that of native AP, and the protease accessibility of the AP moieties in spheroplasts and whole cells was analyzed. The results of these experiments suggested that the fusion junctions occur within periplasmic regions of CvA. We conclude that CvaA is an inner membrane protein with a single transmembrane domain near its N terminus; the large C-terminal region extends into the periplasm. This study demonstrates the application of AP fusion analysis to elucidate the topology of a membrane-associated protein having only a single transmembrane domain. 相似文献
4.
Genetic analysis of an MDR-like export system: the secretion of colicin V. 总被引:42,自引:0,他引:42 下载免费PDF全文
The extracellular secretion of the antibacterial toxin colicin V is mediated via a signal sequence independent process which requires the products of two linked genes: cvaA and cvaB. The nucleotide sequence of cvaB reveals that its product is a member of a subfamily of proteins, involved in the export of diverse molecules, found in both eukaryotes and prokaryotes. This group of proteins, here referred to as the 'MDR-like' subfamily, is characterized by the presence of a hydrophobic region followed by a highly conserved ATP binding fold. By constructing fusions between the structural gene for colicin V, cvaC, and a gene for alkaline phosphatase, phoA, lacking its signal sequence, it was determined that 39 codons in the N-terminus of cvaC contained the structural information to allow CvaC-PhoA fusion proteins to be efficiently translocated across the plasma membrane of Escherichia coli in a CvaA/CvaB dependent fashion. This result is consistent with the location of point mutations in the cvaC gene which yielded export deficient colicin V. The presence of the export signal at the N-terminus of CvaC contrasts with the observed C-terminal location of the export signal for hemolysin, which also utilizes an MDR-like protein for its secretion. It was also found that the CvaA component of the colicin V export system shows amino acid sequence similarities with another component involved in hemolysin export, HlyD. The role of the second component in these systems and the possibility that other members of the MDR-like subfamily will also have corresponding second components are discussed. A third component used in both colicin V and hemolysin extracellular secretion is the E. coli host outer membrane protein, TolC. 相似文献
5.
6.
CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca(2+)-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V. 相似文献
7.
Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis 总被引:2,自引:0,他引:2
Marco J. van Belkum Randy W. Worobo † Michael E. Stiles 《Molecular microbiology》1997,23(6):1293-1301
Many non-lantibiotic bacteriocins of lactic acid bacteria are produced as precursors which have N-terminal leader peptides that share similarities in amino acid sequence and contain a conserved processing site of two glycine residues in positions -1 and -2. A dedicated ATP-binding cassette (ABC) transporter is responsible for the proteolytic cleavage of the leader peptides and subsequent translocation of the bacteriocins across the cytoplasmic membrane. To investigate the role that these leader peptides play in the recognition of the precursor by the ABC transporters, the leader peptides of leucocin A, lactococcin A or colicin V were fused to divergicin A, a bacteriocin from Carnobacterlum divergens that is secreted via the cell's general secretion pathway. Production of divergicin was monitored when these fusion constructs were introduced into Leuconostoc gelidum, Lactococcus lactis and Escherichia coli, which carry the secretion apparatus for leucocin A, lactococcins A and B, and colicin V, respectively. The different leader peptides directed the production of divergicin in the homologous hosts. In some cases production of divergicin was also observed when the leader peptides were used in heterologous hosts. For ABC-transporter-dependent secretion in E. coli the outer membrane protein TolC was required. Using this strategy, colicin V was produced in L. lactis by fusing this bacteriocin behind the leader peptide of leucocin A. 相似文献
8.
Luthra A Mahmood A Arora A Ramachandran R 《The Journal of biological chemistry》2008,283(52):36532-36541
Rv3868, a conserved hypothetical protein of the ESAT-6 secretion system of Mycobacterium tuberculosis, is essential for the secretion of at least four virulence factors. Each protein chain is approximately 63 kDa and assembles into a hexamer. Limited proteolysis demonstrates that it consists of two domains joined by a linker. The N-terminal domain is a compact, helical domain of approximately 30 kDa and apparently functions to regulate the ATPase activity of the C-terminal domain and the oligomerization. The nucleotide binding site is situated in the C-terminal domain, which exhibits ATP-dependent self-association. It is also the oligomerization domain. Dynamic fluorescence quenching studies demonstrate that the domain is proximal to the C terminus in the apoprotein and exhibits a specific movement upon ATP binding. In silico modeling of the domains suggests that Arg-429 of a neighboring subunit forms a part of the binding site upon oligomerization. Mutational analysis of binding site residues demonstrates that the Arg-429 functions as the important "sensor arginine" in AAA-ATPases. Protein NMR experiments involving CFP-10 and activity assays rule out a general chaperone-like function for Rv3868. On the other hand, ATP-dependent "open-close" movements of the individual domains apparently enable it to interact and transfer energy to co-proteins in the ESX-1 pathway. 相似文献
9.
DNA ligases are grouped into two families, ATP-dependent and NAD-dependent, according to the cofactor required for their activity. A surprising capability of both kinds of ligases to complement for one another in vivo has been observed. Bacillus subtilis harbours one NAD-dependent ligase, YerG, and two ATP-dependent ligases, YkoU and YoqV, this last one being encoded by the 134 kb lysogenic bacteriophage SPβ and consisting of a single adenylation domain typical of ATP-dependent ligases. Because the genetics of ligases in B.subtilis had not been studied previously, the genes encoding for one ligase of each kind, yerG and yoqV, were investigated. We found that the yerG gene was essential in B.subtilis. This suggests that none of the ATP-dependent ligases was able to complement the yerG defect. In addition, the ATP-dependent ligase encoded by yoqV, when cloned on a plasmid under appropriate expression signals, was unable to rescue a yerG mutant strain. The two B.subtilis ligase genes yerG and yoqV were also introduced in an Escherichia coli strain encoding a thermosensitive ligase (ligts), and whereas yoqV did not complement the ligts defects, yerG fully complemented the growth and UV sensitivity defects of the lig mutant. We propose to rename the yerG and yoqV genes of B.subtilis ligA and ligB respectively. 相似文献
10.
Vincenzo A. Rao Velupillai Srikannathasan William N. Hunter Sarah J. Coulthurst 《Molecular microbiology》2012,86(4):921-936
Protein secretion systems are critical to bacterial virulence and interactions with other organisms. The Type VI secretion system (T6SS) is found in many bacterial species and is used to target either eukaryotic cells or competitor bacteria. However, T6SS‐secreted proteins have proven surprisingly elusive. Here, we identified two secreted substrates of the antibacterial T6SS from the opportunistic human pathogen, Serratia marcescens. Ssp1 and Ssp2, both encoded within the T6SS gene cluster, were confirmed as antibacterial toxins delivered by the T6SS. Four related proteins encoded around the Ssp proteins (‘Rap’ proteins) included two specifically conferring self‐resistance (‘immunity’) against T6SS‐dependent Ssp1 or Ssp2 toxicity. Biochemical characterization revealed specific, tight binding between cognate Ssp–Rap pairs, forming complexes of 2:2 stoichiometry. The atomic structures of two Rap proteins were solved, revealing a novel helical fold, dependent on a structural disulphide bond, a structural feature consistent with their functional localization. Homologues of the Serratia Ssp and Rap proteins are found encoded together within other T6SS gene clusters, thus they represent founder members of new families of T6SS‐secreted and cognate immunity proteins. We suggest that Ssp proteins are the original substrates of the S. marcescens T6SS, before horizontal acquisition of other T6SS‐secreted toxins. Molecular insight has been provided into how pathogens utilize antibacterial T6SSs to overcome competitors and succeed in polymicrobial niches. 相似文献
11.
Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. 下载免费PDF全文
Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome II revealed the presence of 10 putative open reading frames, of which 5 possess homology to genes encoding the TMAO reductase (the tor system) of Escherichia coli. The dorS and dorR genes encode a sensor-regulator pair of the two-component sensory transduction protein family, homologous to the torS and torR gene products. The dorC gene was shown to encode a 44-kDa DMSO-inducible c-type cytochrome. The dorB gene encodes a membrane protein of unknown function homologous to the torD gene product. The dorA gene encodes DMSO reductase, containing the molybdopterin active site. Mutations were constructed in each of these dor genes, and the resulting mutants were shown to be impaired for DMSO-dependent anaerobic growth in the dark. The mutant strains exhibited negligible levels of DMSO reductase activity compared to the wild-type strain under similar growth conditions. Further, no DorA protein was detected in DorS and DorR mutant strains with anti-DorA antisera, suggesting that the products of these genes are required for the positive regulation of dor expression in response to DMSO. This characterization of the dor gene cluster is the first evidence that genes of chromosome CII encode metabolic functions which are essential under particular growth conditions. 相似文献
12.
Identification of two proteins encoded by the Saccharomyces cerevisiae GAL4 gene. 总被引:8,自引:1,他引:7 下载免费PDF全文
We placed the Saccharomyces cerevisiae GAL4 gene under control of the galactose regulatory system by fusing it to the S. cerevisiae GAL1 promoter. After induction with galactose, GAL4 is now transcribed at about 1,000-fold higher levels than in wild-type S. cerevisiae. This regulated high-level expression has enabled us to tentatively identify two GAL4-encoded proteins. 相似文献
13.
Antony V E Chapman Matthew Hunt Priyanka Surana Valeria Velsquez-Zapata Weihui Xu Greg Fuerst Roger P Wise 《Genetics》2021,217(2)
Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308–309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants. 相似文献
14.
Colette Duez Astrid Zervosen Nathalie Teller Rémy Melkonian Emmanuel Banzubazé Fabrice Bouillenne ré Luxen & Jean-Marie Frère 《FEMS microbiology letters》2009,300(1):42-47
In Bacillus subtilis , the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An aldose-1-epimerase or mutarotase activity was measured with the YoxA protein that we propose to rename as GalM by analogy with its counterpart in E. coli . The peptide d -Glu-δ- m -A2 pm- d -Ala- m -A2 pm- d -Ala mimicking the B. subtilis and E. coli interpeptide bridge was synthesized and incubated with the purified dacC product, the PBP4a. A clear dd -endopeptidase activity was obtained with this penicillin-binding protein, or PBP. The possible role of this class of PBP, present in almost all bacteria, is discussed. 相似文献
15.
Y Hong K Ohishi R Watanabe Y Endo Y Maeda T Kinoshita 《The Journal of biological chemistry》1999,274(26):18582-18588
Attachment of glycosylphosphatidylinositol (GPI) is essential for the surface expression of many proteins. Biosynthesis of glycosylphosphatidylinositol is initiated by the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol. In mammalian cells, this reaction is mediated by a complex of PIG-A, PIG-H, PIG-C, and GPI1. This complexity may be relevant for regulation and for usage of a particular phosphatidylinositol. However, the functions of the respective components have been unclear. Here we cloned the mouse GPI1 gene and disrupted it in F9 embryonal carcinoma cells. Disruption of the GPI1 gene caused a severe but not complete defect in the generation of glycosylphosphatidylinositol-anchored proteins, indicating some residual biosynthetic activity. A complex of PIG-A, PIG-H, and PIG-C decreased to a nearly undetectable level, whereas a complex of PIG-A and PIG-H was easily detected. A lack of GPI1 also caused partial decreases of PIG-C and PIG-H. Therefore, GPI1 stabilizes the enzyme by tying up PIG-C with a complex of PIG-A and PIG-H. 相似文献
16.
The Saccharomyces carlsbergensis MEL1 gene encodes alpha-galactosidase (melibiase; MEL1) which is readily secreted by yeast cells into the culture medium. To evaluate the utility of the MEL1 signal peptide (sp) for the secretion of heterologous proteins by Saccharomyces cerevisiae, an expression vector was constructed which contains the MEL1 promoter and MEL1 sp coding sequence (MEL1sp). The coding sequences for echistatin (Echis) and human plasminogen activator inhibitor type 1 (PAI-1) were inserted in-frame with the MEL1sp. S. cerevisiae transformants containing the resulting expression vectors secreted negligible amounts of either Echis or PAI-1. Using site-directed mutagenesis, several mutations were introduced into the MEL1sp. Two mutations were identified which dramatically increased the secretion of both Echis and PAI-1 to levels similar to those achieved when using the yeast MF alpha 1 pre-pro secretory leader. In particular, increasing the hydrophobicity of the core region plus the addition of a positive charge to the N-terminal domain of the MEL1 sp resulted in the greatest increase in the secretion levels of those two proteins. 相似文献
17.
DNA polymerase III, a second essential DNA polymerase, is encoded by the S. cerevisiae CDC2 gene 总被引:34,自引:0,他引:34
Three nuclear DNA polymerases have been described in yeast: DNA polymerases I, II, and III. DNA polymerase I is encoded by the POL1 gene and is essential for DNA replication. Since the S. cerevisiae CDC2 gene has recently been shown to have DNA sequence similarity to the active site regions of other known DNA polymerases, but to nevertheless be different from DNA polymerase I, we examined cdc2 mutants for the presence of DNA polymerases II and III. DNA polymerase II was not affected by the cdc2 mutation. DNA polymerase III activity was significantly reduced in the cdc2-1 cell extracts. We conclude that the CDC2 gene encodes yeast DNA polymerase III and that DNA polymerase III, therefore, represents a second essential DNA polymerase in yeast. 相似文献
18.
Genetic screens in zebrafish identified several loci that play essential roles in the patterning of retinal architecture. Here, we show that one of them, glass onion, encodes the N-cadherin gene. The glo(m117) mutant allele contains a substitution of the Trp2 residue known for its essential role in the adhesive properties of classic cadherins. Both the glo(m117) and pac(tm101b) mutant N-cadherin alleles affect the polarity of the retinal neuroepithelial sheet and, unexpectedly, both result in cell-nonautonomous phenotypes in retinal patterning. The late onset of mutant N-cadherin phenotypes may be due to the ability of classic cadherins to substitute each other's function. 相似文献
19.
P J Folkers A P Stassen J P van Duynhoven B J Harmsen R N Konings C W Hilbers 《European journal of biochemistry》1991,200(1):139-148
Recording of good quality NMR spectra of the single-stranded DNA binding protein gene V of the bacteriophage M13 is hindered by a specific protein aggregation effect. Conditions are described for which NMR spectra of the protein can best be recorded. The aromatic part of the spectrum has been reinvestigated by means of two-dimensional total correlation spectroscopy. Sequence-specific assignments were obtained for all of the aromatic amino acid residues with the help of a series of single-site mutant proteins. The solution properties of the mutants of the aromatic amino acid residues have been fully investigated. It has been shown that, for these proteins, either none or only local changes occur compared to the wild-type molecule. Spin-labeled oligonucleotide-binding studies of wild-type and mutant gene V proteins indicate that tyrosine 26 and phenylalanine 73 are the only aromatic residues involved in binding to short stretches of single-stranded DNA. The degree of aggregation of wild-type gene V protein is dependent on both the total protein and salt concentration. The data obtained suggest the occurrence of specific protein-protein interactions between dimeric gene V protein molecules in which the tyrosine residue at position 41 is involved. This hypothesis is further strengthened by the observation that the solubility of tyrosine 41 mutants of gene V protein is significantly higher than that of the wild-type protein. The discovery of the so-called 'solubility' mutants of M13 gene V protein has finally made it possible to study the solution structure of gene V protein and its interaction with single-stranded DNA by means of two-dimensional NMR. 相似文献
20.
Yu L Gunasekera AH Mack J Olejniczak ET Chovan LE Ruan X Towne DL Lerner CG Fesik SW 《Journal of molecular biology》2001,311(3):593-604
Streptococcus pneumoniae is a major human pathogen that causes high mortality and morbidity rates and has developed resistance to many antibiotics. The genome of S. pneumoniae has recently been completely sequenced revealing many genes encoding hypothetical proteins of unknown function. We have found that the gene encoding one such conserved protein, SP14.3, is essential for growth of S. pneumonia. Since it is essential, SP14.3 represents a potential target for drug discovery. Here, we describe the three-dimensional solution structure of SP14.3 as determined by NMR spectroscopy. The structure consists of two domains each with an alpha/beta-fold. The N-terminal domain contains two alpha-helices and a three-stranded beta-sheet, while the C-terminal domain is composed of one alpha-helix and a five-stranded beta-sheet. The N-terminal domain of the protein contains a highly negatively charged surface and resembles the fold of the N-terminal domain of Thermus thermophilus ribosomal protein S3. The C-terminal domain has a protein fold similar to human small nuclear ribonucleoprotein Sm D3 and Haloarcula marismortui ribosomal protein L21E. The two domains of the protein tumble in solution overall as a whole with an overall molecular rotational correlation time (tau(m)) of 12.9 ns at 25 degrees C. The relative orientation of the two domains is not defined by the nuclear Overhauser effect data. Indeed, residual dipolar couplings and the structure calculations indicate that the relative orientation of the two domains is not rigidly oriented with respect to one another in solution. 相似文献