首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic properties of porcine pancreatic phospholipase A2 were studied on a series of n-acylglycollecithins and n-acylglycol sulfates containing acyloxy or acylthio ester bonds at substrate concentrations below and above the critical micelle concentration. These single-chain detergents containing a primary (thio) ester bond are hydrolyzed rather slowly by the pancreatic enzyme, and maximal activity was found always for the n-octanoyl derivatives. The acylthio ester group is split 4-5 times faster than the corresponding acyloxy ester function. The kinetic behavior of the enzyme acting on zwitterionic glycollecithins or on anionic glycol sulfates is quite different and provides an explanation for the differences in pH optimum. Both for glycollecithins and for glycol sulfates, maximal enzyme activities are found in high molecular weight aggregates consisting of several enzyme molecules and detergent monomers. Their pathway of formation, however, is not the same.  相似文献   

2.
The specific steroid binding capacity of soluble preparations from mouse fibroblasts and rat thymic lymphocytes is inactivated by incubation with phospholipases. Receptor binding is drastically reduced by very low concentrations of boiled phospholipase A preparations from bee venom and snake venoms. The enzyme effect is calcium-dependent and is blocked by both phospholipid and a substrate analog that is a competitive inhibitor of phospholipase A. The specific binding capacity is also sensitive to digestion by phospholipase C. Two possible mechanisms are considered for the phospholipase A effect: (a) the receptor protein may be associated with a phospholipid component which is required for specific hormone binding; (b) phospholipase A may be producing detergent products that are indirectly inactivating the receptor. Examination of the effects of lysophosphatide on the receptor and assay of lipid phosphate in the receptor preparation do not support a mechanism based solely on detergent effects. Because phospholipase C, which does not produce detergent products, also inactivates the binding, we propose that the phospholipases may be digesting the phospholipid which is a requisite component of the glucocorticoid receptor.  相似文献   

3.
《FEBS letters》2014,588(24):4776-4783
The central component AcrB of the Escherichia coli drug efflux complex AcrA–AcrB–TolC has been extensively investigated by X-ray crystallography of detergent–protein 3-D crystals. In these crystals, AcrB packs as trimers – the functional unit. We visualized the AcrB–AcrB interaction in its native environment by examining E. coli lipid reconstituted 2-D crystals, which were overwhelmingly formed by asymmetric trimers stabilized by strongly-interacting monomers from adjacent trimers. Most interestingly, we observed lattices formed by an arrangement of AcrB monomers distinct from that in traditional trimers. This hitherto unobserved packing, might play a role in the biogenesis of trimeric AcrB.  相似文献   

4.
Using dynamic light scattering and 31P-NMR spectroscopy methods, the reaction of solubilization of phosphatidylcholine by the ionic detergent, sodium deoxycholate, in aqueous solutions was studied. The kinetics of phosphatidylchodine hydrolysis by phospholipase C from B. cereus depending on the size and structural organization of substrate aggregates was investigated. No phosphatidylcholine hydrolysis was observed in the case of lamellar organization of the substrate, the size of lamellas not exceeding 2000-5000 A. The substrate hydrolysis rate within mixed micelles was controlled by the accessibility of the substrate on the surface of micellar aggregates. There was a decrease in the phosphatidylcholine hydrolysis rate at high detergent concentrations in the system. It was concluded that such a decrease in the hydrolysis rate can be due to two reasons, i) the decrease in mixed micelle size with a simultaneous decrease of surface concentration of the substrate, and, ii) the formation of "pure" detergent micelles capable to adsorb the enzyme by decreasing the "effective" concentration of phospholipase C.  相似文献   

5.
The negatively charged detergents S-n-alka-noylthioglycol sulfates (C8, C9, and C10) are substrates for porcine pancreatic phospholipase A2 and its zymogen. At pH 6.0 and detergent concentrations up to 0.08 X critical micelle concentration (cmc), the activities of active enzyme and zymogen are similar and very low. From 0.08 X cmc to 0.12 X cmc a tremendous increase in activity is observed for phospholipase A2, but not for the zymogen. Concomitant with this increase in activity there is a sharp rise in molecular weight of the substrate-enzyme complex, from 15 000 to 95 000, and in detergent to protein molar ratio of 1:1 to about 7:1. This indicates both substrate and enzyme aggregation. Most probably a lipid-water interface is formed inside the aggregated protein particle by which the enzyme is activated. Although the zymogen also forms high molecular weight complexes with similar molar ratios, no activation is observed probably because of distortion of its lipid binding domain.  相似文献   

6.
The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.  相似文献   

7.
Incorporation of alkaline phosphatase (AP), a glycosylphosphatidylinositol (GPI)-anchored protein, into liposomes containing detergent, followed by detergent removal with hydrophobic resin was performed. Incorporation media were collected during different steps of detergent removal and were analyzed by flotation in sucrose gradient. The presence of protein was checked by measuring enzymatic activity, while the presence of 3H-radio-labelled liposomes was followed by determination of the radioactivity. The incorporation yield of the protein into liposomes increased with incubation time in presence of hydrophobic resin. Protein was also incorporated at different protein/lipid ratios. At the highest protein lipid ratio, our data showed that 260 molecules of GPI-linked AP (AP-GPI) could be associated with one liposome, corresponding to 65% vesicle coverage. Finally, observations by electron cryomicroscopy indicated (i) that the protein seemed exclusively associated with the lipid bilayer via the GPI-anchor, as shown by the distance—about 2.5 nm—between the protein core and the liposome membrane; (ii) that the AP-GPI distribution was heterogeneous on the liposome surface, forming clusters of protein. Abbreviations: AP, alkaline phosphatase; AP-GPI, glycosylphosphatidylinositol-linked alkaline phosphatase; EM, electron microscopy; EPA, egg phosphatidic acid; GPI, glycosylphosphatidylinositol; OctGlc, n-octyl -D-glucoside; PtdCho, egg yolk phosphatidylcholine; PtdIns-PLC, glycosylphosphatidylinositol-specific phospholipase C. Enzymes: Alkaline phosphatase, orthophosphoric-monoester phosphohydrolase (EC 3.1.3.1); glycosylphosphatidylinositol-specific phospholipase C (EC 3.1.4.10).  相似文献   

8.
Non-competitive inhibition of snake venom phospholipase A2 which has been exhibited by bovine plasma phospholipase A inhibitor, a kind of lipoprotein, was not observed unless the inhibitor was preincubated with the enzyme. The inhibition seemed to be due to the formation of the enzyme-inhibitor complex, which was identified by immunoelectrophoresis. The enzyme-inhibitor interaction was observed maximally on incubation at physiological pH, but not below pH 5. The inhibitor was inactivated by trypsin digestion and heat treatment. It suppressed the phospholipase A2 activities of rat blood plasma as well as of the snake venom and porcine pancreas, but not the enzyme activities such as those of phospholipase C of Bacillus cereus, lipase of porcine pancreas, trypsin, and papain. The inhibitor also showed the ability to decrease membrane-bound phospholipase A1 and A2 activities in intracellular organelles such as plasma membranes, mitochondria, lysosomes, and microsomes. In view of these facts, it was concluded that the plasma inhibitor is specific for phospholipase A.  相似文献   

9.
ClyA is a pore-forming toxin from virulent Escherichia coli and Salmonella enterica strains. Here, we show that the intrinsic hemolytic activity of ClyA is independent of its redox state, and that the assembly of both reduced and oxidized ClyA to the ring-shaped oligomer is triggered by contact with lipid or detergent. A rate-limiting conformational transition in membrane-bound ClyA monomers precedes their assembly to the functional pore. We obtained a three-dimensional model of the detergent-induced oligomeric complex at 12 A resolution by combining cryo- and negative stain electron microscopy with mass measurements by scanning transmission electron microscopy. The model reveals that 13 ClyA monomers assemble into a cylinder with a hydrophobic cap region, which may be critical for membrane insertion.  相似文献   

10.
M Drees  K Beyer 《Biochemistry》1988,27(23):8584-8591
The interaction of spin-labeled phospholipids with the detergent-solubilized ADP/ATP carrier protein from the inner mitochondrial membrane has been investigated by electron spin resonance spectroscopy. The equilibrium binding of cardiolipin and phosphatidic acid was studied by titration of the protein with spin-labeled phospholipid analogues using a spectral subtraction protocol for the evaluation of the mobile and immobilized lipid portions. This analysis revealed the immobilization of two molecules of spin-labeled cardiolipin per protein dimer. Phosphatidic acid has a similar affinity for the protein surface as cardiolipin. The lipid-protein interaction was less pronounced with the neutral phospholipids and with phosphatidylglycerol. The importance of the electrostatic contribution to the phospholipid-protein interaction shows up with a strong dependence of the lipid binding on salt concentration. Cleavage by phospholipase A2 and spin reduction by ascorbate of the spin-labeled acidic phospholipids in contact with the protein surface suggest that these lipids are located on the outer perimeter of the protein. At reduced detergent concentration, the protein aggregated upon addition of small amounts of cardiolipin but remained solubilized when more cardiolipin was added. This result is discussed with respect to the aggregation state of the protein in the mitochondrial membrane. It is also tentatively concluded that binding of spin-labeled cardiolipin does not displace the tightly bound cardiolipin of mitochondrial origin, which was detected previously by 31P nuclear magnetic resonance spectroscopy.  相似文献   

11.
The tryptophan fluorescence emission intensity at 340 nm of monomeric phospholipase A2 from Agkistrodon piscivorus piscivorus increased about 70% upon addition of dipalmitoylphosphatidylcholine small unilamellar vesicles (DPPC SUV) at 25 degrees C. The emission spectrum was also blue-shifted 6-8 nm, suggesting that the environment of 1 or more tryptophan residues had become less polar. This effect of SUV on the phospholipase A2 fluorescence was independent of Ca2+ at 25 degrees C, and the apparent association constant for the interaction was approximately 1.7 x 10(4) M-1. The apparent Km for hydrolysis of DPPC SUV was equal to the inverse of the estimated association constant. In the absence of Ca2+, the change in fluorescence intensity decreased with increasing temperature. Thermodynamic analysis of this reversible, temperature-dependent fluorescence change indicated that the A. p. piscivorus monomer phospholipase A2 interacts only with SUV in the true gel phase existing below the pretransition of gel to "ripple" phase lipid in the absence of Ca2+. In contrast, the fluorescence intensity change upon addition of SUV in the presence of Ca2+ was independent of temperature over the range of 25-48 degrees C. Under these conditions, hydrolysis of the lipid occurred concomitantly with the change in fluorescence which could not be reversed by the addition of EDTA. With a nonhydrolyzable analog of DPPC, however, the fluorescence changes upon mixing of SUV, Ca2+, and phospholipase A2 were reversible and temperature-dependent. Thus, the apparent irreversibility of the change in fluorescence observed with Ca2+ and DPPC SUV was correlated with hydrolysis of the vesicles. These results indicate that the magnitude of the initial interaction of enzyme with substrate is reversible, is Ca2+-independent, depends upon the lipid state, and is quantitatively correlated to the maximum rate of hydrolysis.  相似文献   

12.
The effect of surface charge on the porcine pancreatic phospholipase A2 catalyzed hydrolysis of organized substrates was examined through initial rate enzyme kinetic measurements. Two long-chain phospholipid substrates, phosphatidylglycerol (PG) and phosphatidylcholine (PC), were solubilized in seven detergents differing in polar head-group charge. The neutral or zwitterionic detergents selected were Triton X-100, Zwittergent 314, lauryl maltoside, hexadecylphosphocholine (C16PN), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The negatively and positively charged detergents used were cholate and CTAB, respectively. In general, the negatively charged phospholipid PG was hydrolyzed much more rapidly than the neutral (zwitterionic) phospholipid PC. The rate of hydrolysis of PG was rapid when solubilized in all the neutral detergents and in cholate but was essentially zero in the positively charged CTAB. Conversely, hydrolysis of PC was negligible when solubilized in neutral detergents, except C16PN, and was maximal in the negatively charged detergent, cholate. The rate of hydrolysis of PC solubilized in a neutral detergent became significant only when a negative surface charge was introduced by addition of SDS. Taken together, these kinetic measurements indicate that the surface charge on the lipid aggregates is an important factor in the rate of hydrolysis of phospholipid substrates and the highest activity is observed when the net surface charge is negative. Fluorescence and electron spin resonance (ESR) spectroscopic data provide additional support for this conclusion. The fluorescence emission spectrum of the single tryptophan of phospholipase A2 is a sensitive monitor of interfacial complex formation and shows that interaction of the protein with detergent micelles is strongly dependent on the presence of a negatively charged amphiphile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have studied the role of Tyr-69 of porcine pancreatic phospholipase A2 in catalysis and substrate binding, using site-directed mutagenesis. A mutant was constructed containing Phe at position 69. Kinetic characterization revealed that the Phe-69 mutant has retained enzymatic activity on monomeric and micellar substrates, and that the mutation has only minor effects on kcat and Km. This shows that Tyr-69 plays no role in the true catalytic events during substrate hydrolysis. In contrast, the mutation has a profound influence on the stereospecificity of the enzyme. Whereas the wild-type phospholipase A2 is only able to catalyse the degradation of sn-3 phospholipids, the Phe-69 mutant hydrolyses both the sn-3 isomers and, at a low (1-2%) rate, the sn-1 isomers. Despite the fact that the stereospecificity of the mutant phospholipase has been altered, Phe-69 phospholipase still requires Ca2+ ions as a cofactor and also retains its specificity for the sn-2 ester bond. Our data suggest that in porcine pancreatic phospholipase A2 the hydroxyl group of Tyr-69 serves to fix and orient the phosphate group of phospholipid monomers by hydrogen bonding. Because no such interaction can occur between the Phe-69 side-chain and the phosphate moiety of the substrate monomer, the mutant enzyme loses part of its stereospecificity but not its positional specificity.  相似文献   

14.
The effect of detergents on giant unilamellar vesicles (GUVs) composed of phosphatidylcholine, sphingomyelin and cholesterol and containing liquid-ordered phase (l(o)) domains was investigated. Such domains have been used as models for the lipid rafts present in biological membranes. The studied detergents included lyso-phosphatidylcholine, the product of phospholipase A2 activity, as well as Triton X-100 and Brij 98, i.e. detergents used to isolate lipid rafts as DRMs. Local external injection of each of the three detergents at subsolubilizing amounts promoted exclusion of l(o) domains from the GUV as small vesicles. The budding and fission processes associated with this vesiculation were interpreted as due to two distinct effects of the detergent. In this framework, the budding is caused by the initial incorporation of the detergent in the outer membrane leaflet which increases the spontaneous curvature of the bilayer. The fission is related to the inverted-cone molecular shape of the detergent which stabilizes positively curved structures, e.g. pores involved in vesicle separation. On the other hand, we observed in GUVs neither domain formation nor domain coalescence to be induced by the addition of detergents. This supports the idea that isolation of DRM from biological membranes by detergent-induced extraction is not an artifact. It is also suggested that the physico-chemical mechanisms involved in l(o) domain budding and fission might play a role in rafts-dependant endocytosis in cells.  相似文献   

15.
Gadd ME  Biltonen RL 《Biochemistry》2000,39(32):9623-9631
The first requirement in the hydrolysis of phospholipid bilayers by phospholipase A(2) is the interaction of the enzyme with the bilayer surface. The catalytic ability of phospholipase A(2) has been shown to be extremely sensitive to the topology of the bilayer to which it binds and hydrolyzes. Phospholipid bilayer properties and composition such as unsaturation, charge, and the presence of reaction products are known regulators of the catalytic activity of phospholipase A(2) toward the phospholipids and influences the binding of enzyme to the membrane. We show in this paper that the effect of increased anionic lipid results in enhanced binding that can be described quantitatively in terms of a simple phenomenological model. However, the interaction with anionic lipid does not singularly dominate the thermodynamics of binding, nor can the lag phase observed in the time course of hydrolysis of large unilamellar vesicles simply be the result of limited interaction between the enzyme and the bilayer. Furthermore, we show that phospholipase A(2) from Akgistrodon piscivorus piscivorus can exist in at least two bilayer-bound states and that the absence of a fluorescence change upon mixing the enzyme with lipid bilayers does not necessarily indicate the absence of an interaction.  相似文献   

16.
The action of phospholipase A2 and alpha-tocopherol on adenylate cyclase system functioning and on the lipid bilayer microviscosity of the rat brain synaptosome membranes was investigated. It was shown that the exposure of the synaptosomes to phospholipase A2 increases the adenylate cyclase activity stimulated by guanylyl imidotriphosphate (GITP), decreases the adenylate cyclase activity stimulated both by isoproterenol and by isoproterenol with GITP. The preincubation of synaptosomes in medium containing alpha-tocopherol does not change the character of the phospholipase action on the adenylate cyclase activity stimulated by isoproterenol but normalizes the adenylate cyclase activity stimulated both by GITP and by GITP with isoproterenol. In the last case the normalizing action of alpha-tocopherol is not caused by alteration of the microviscosity of the lipid bilayer. It appears to be due to the modification of the lipid-protein interactions of annular lipids with activated complex of catalytic subunit and guanyl nucleotide-binding protein.  相似文献   

17.
Pneumolysin, a major virulence factor of the human pathogen Streptococcus pneumoniae, is a soluble protein that disrupts cholesterol-containing membranes of cells by forming ring-shaped oligomers. Magic angle spinning and wideline static (31)P NMR have been used in combination with freeze-fracture electron microscopy to investigate the effect of pneumolysin on fully hydrated model membranes containing cholesterol and phosphatidylcholine and dicetyl phosphate (10:10:1 molar ratio). NMR spectra show that the interaction of pneumolysin with cholesterol-containing liposomes results in the formation of a nonbilayer phospholipid phase and vesicle aggregation. The amount of the nonbilayer phase increases with increasing protein concentration. Freeze-fracture electron microscopy indicates the coexistence of aggregated vesicles and free ring-shaped structures in the presence of pneumolysin. On the basis of their size and analysis of the NMR spectra it is concluded that the rings are pneumolysin oligomers (containing 30-50 monomers) complexed with lipid (each with 840-1400 lipids). The lifetime of the phospholipid in either bilayer-associated complexes or free pneumolysin-lipid complexes is > 15 ms. It is further concluded that the effect of pneumolysin on lipid membranes is a complex combination of pore formation within the bilayer, extraction of lipid into free oligomeric complexes, aggregation and fusion of liposomes, and the destabilization of membranes leading to formation of small vesicles.  相似文献   

18.
The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.  相似文献   

19.
The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hyorolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from pig pancreas and Crotalus adamanteus and phospholipase D from cabbage, can hydrolyse phospholipid monolayers at pressure below 31 dynes/cm only. The phospholipases which can hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Clostridium welchii phospholipase A2 from Naja naja and bee venom and sphingomyelinase from Staphylococcus aureus, can hydrolyse phospholipid monolayers at pressure above 31 dynes/cm. It is concluded that the lipid packing in the outer monolayer of the erythrocyte membrane is comparable with a lateral surface pressure between 31 and 34.8 dynes/cm.  相似文献   

20.
S Y Mao  A H Maki  G H de Haas 《Biochemistry》1986,25(10):2781-2786
The direct binding of porcine pancreatic phospholipase A2 and its zymogen to 1,2-bis(heptanylcarbamoyl)-rac-glycerol 3-sulfate was studied by optical detection of triplet-state magnetic resonance spectroscopy in zero applied magnetic field. The zero-field splittings of the single Trp3 residue undergo significant changes upon binding of phospholipase A2 to lipid. Shifts in zero-field splittings, characterized mainly by a reduction of the E parameter from 1.215 to 1.144 GHz, point to large changes in the Trp3 local environment which accompany the complexing of phospholipase A2 with lipid. This may be attributed to Stark effects caused by the binding of a charged group near Trp3 in the enzyme-lipid complex. The cofactor, Ca2+, which is strongly bound to the enzyme active site, has an influence on the bonding, as reflected by smaller zero-field splitting shifts. A relatively small change in the Trp environment was observed for the interaction of the zymogen with lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号