首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
ABSTRACT Indirect effects emerge when a change in the abundance of one species indirectly affects another by changing the abundances of intermediate species-called density-mediated indirect effects-or they arise when one species modifies how two other species interact-called trait-mediated indirect effects. I report on field experiments that evaluated how grass and herb biomass in old-field interaction webs was influenced indirectly by a spider carnivore through its interactions with a generalist and a grass-specialist grasshopper species. I manipulated interaction pathways between the spider and the plants using different combinations of the grasshopper species. I changed the modality of predator-prey interactions to isolate density-mediated from trait-mediated effects using natural spiders (predation spiders) or spiders that were prevented from subduing prey by mouthpart manipulation (risk spiders). I found that indirect effects were stronger in speciose, reticulate food webs than in linear food chains owing to a trait-mediated effect, a diet shift by herbivores in response to predation risk. Spiders alone did not have significant effects on grasshopper densities in the field experiments, removing any possibility of density-mediated indirect effects. The study illustrates that ecologists should not underestimate the importance of behavioral ecology in determining community-level interactions.  相似文献   

2.
Recent reviews on trait-mediated interactions in food webs suggest that trait-mediated effects are as important in triggering top–down trophic cascades as are density-mediated effects. Trait-mediated interactions between predator and prey result from non-consumptive predator effects changing behavioural and/or life history traits of prey. However, in biological control the occurrence of trait-mediated interactions between predators, prey and plants has been largely ignored. Here, we show that non-consumptive predator effects on prey cascade down to the plant in an agro-ecological food chain. The study system consisted of the predatory mites P. persimilis and N. californicus , the herbivorous non-target prey western flower thrips F. occidentalis and the host plant bean. Irrespective of predator species and risk posed to prey, the presence of predator eggs led to increased ambulation, increased mortality and decreased oviposition of thrips. Furthermore, the presence of predator eggs reduced leaf damage caused by thrips. To our knowledge this is the first experimental evidence suggesting a positive trophic cascade triggered by non-consumptive predator effects on non-target prey in an augmentative biological control system.  相似文献   

3.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

4.
Plant communities are shaped by bottom-up processes such as competition for nutrients and top-down processes such as herbivory. Although much theoretical work has studied how herbivores can mediate plant species coexistence, indirect effects caused by the carnivores that consume herbivores have been largely ignored. These carnivores can have significant indirect effects on plants by altering herbivore density (density-mediated effects) and behavior (trait-mediated effects). Carnivores that differ in traits, particularly in their hunting mode, cause different indirect effects on plants and, ultimately, different plant community compositions. We analyze a food-web model to determine how plant coexistence is affected by herbivore-consuming carnivores, contrasting those causing only density-mediated effects with those causing trait-mediated effects as well. In the latter case, herbivores can adjust their consumption of a refuge plant species. We derive a general graphical model to study the interplay of density- and trait-mediated effects. We show that carnivores eliciting both effects can sustain plant species coexistence, given intermediate intensities of behavioral adjustments. Coexistence is more likely, and more stable, if the refuge plant is competitively dominant. These results extend our understanding of carnivore indirect effects in food webs and show that behavioral effects can have major consequences on plant community structure, stressing the need for theoretical approaches that incorporate dynamical traits.  相似文献   

5.
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab ( Carcinus maenas ), an intermediate consumer (the snail, Nucella lapillus ) and a basal resource (the barnacle, Semibalanus balanoides ) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.  相似文献   

6.
Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.  相似文献   

7.
Parasites play pivotal roles in structuring communities, often via indirect interactions with non-host species. These effects can be density-mediated (through mortality) or trait-mediated (behavioural, physiological and developmental), and may be crucial to population interactions, including biological invasions. For instance, parasitism can alter intraguild predation (IGP) between native and invasive crustaceans, reversing invasion outcomes. Here, we use mathematical models to examine how parasite-induced trait changes influence the population dynamics of hosts that interact via IGP. We show that trait-mediated indirect interactions impart keystone effects, promoting or inhibiting host coexistence. Parasites can thus have strong ecological impacts, even if they have negligible virulence, underscoring the need to consider trait-mediated effects when predicting effects of parasites on community structure in general and biological invasions in particular.  相似文献   

8.
Predators can affect the density and traits (e.g. morphology, behavior) of their prey, and either change may influence how prey interact with their resources. Thus, predators can interact indirectly with resource species (i.e. two trophic levels below) through two separate mechanisms. The relative strengths of these two kinds of indirect effects have rarely been compared directly, and how their relative importance varies across environmental gradients is virtually unknown. We investigated the relative strength of trait- and density-mediated indirect effects of the predatory insect Belostoma flumineum on algal communities through predation on the pond snail, Physa gyrina , across a gradient of basal resource abundance. Because prey balance the benefits of foraging against the increased risk of predation while foraging, the availability of the prey's resource should influence the strength of anti-predator behavioral responses and hence the strength of trait-mediated indirect interactions. Belostoma presence had positive indirect effects on resources as expected and total predator effects were constant across the basal resource gradient. At low initial resource levels, trait-mediated indirect effects on algal biomass exceeded density-mediated indirect effects, while at high initial resources the reverse was true. Snails showed similar habitat use across the resource gradient suggesting that the anti-predator response was most likely a depression of activity levels.  相似文献   

9.
Fishing has clear direct effects on harvested species, but its cascading, indirect effects are less well understood. Fishing disproportionately removes larger, predatory fishes from marine food webs. Most studies of the consequent indirect effects focus on density-mediated interactions where predator removal alternately drives increases and decreases in abundances of successively lower trophic-level species. While prey may increase in number with fewer predators, they may also alter their behavior. When such behavioral responses impact the food resources of prey species, behaviorally mediated trophic cascades can dramatically shape landscapes. It remains unclear whether this pathway of change is typically triggered by ocean fishing. By coupling a simple foraging model with empirical observations from coral reefs, we provide a mechanistic basis for understanding and predicting how predator harvest can alter the landscape of risk for herbivores and consequently drive dramatic changes in primary producer distributions. These results broaden trophic cascade predictions for fisheries to include behavioral changes. They also provide a framework for detecting the presence and magnitude of behaviorally mediated cascades. This knowledge will help to reconcile the disparity between expected and observed patterns of fishing-induced cascades in the sea.  相似文献   

10.
We know little about how temporally variable predation risk influences prey behavior. The risk allocation hypothesis predicts that prey facing more frequent risk should show weak anti-predator responses, and should be particularly active foragers during rare periods of safety, compared to prey facing infrequent risk. Several studies offer support for the risk allocation hypothesis, but how these responses might propagate through the larger ecological community remains largely unknown. We experimentally investigated the relative strength of trait- and density-mediated indirect effects of a predator on its prey’s resource across predation treatments that varied the lethality (caged or free-swimming predators) and temporal variability (always, often, or sometimes present) of predation. We performed this experiment in pond mesocosms using a giant water bug predator (Belostoma lutarium), an herbivorous pond snail (Physa gyrina), and algae as the basal resource. Snails greatly reduced the abundance of their algal resource when in the absence of predation. Lethal predation at low and medium intensities had significant positive indirect effects on the abundance of algae, mostly by reducing snail density. Snails responded behaviorally to high levels of deadly predation by foraging more and hiding less than in other situations, as predicted by the risk allocation hypothesis, and thus ameliorated the density-mediated indirect effects of predators on algae. Behavioral responses to caged predators, and the subsequent trait-mediated indirect effects, were negligible regardless of predation intensity. Our previous work has demonstrated that trait-mediated indirect effects are weak when resources are abundant, as they were in this experiment. This work demonstrates that temporal variation in predation intensity plays a key role in determining the relative strength of TMIIs and DMIIs in an aquatic food chain.  相似文献   

11.
Studies on the implications of food web interactions to community structure have often focused on density-mediated interactions between predators and their prey. This approach emphasizes the importance of predator regulation of prey density via consumption (i.e. lethal effects), which, in turn, leads to cascading effects on the prey's resources. A more recent and contrasting view emphasizes the importance of non-lethal predator effects on prey traits (e.g. behaviour, morphology), or trait-mediated interactions. On rocky intertidal shores in New England, green crab ( Carcinus maenas ) predation is thought to be important to patterns of algal abundance and diversity by regulating the density of herbivorous snails ( Littorina littorea ). We found, however, that risk cues from green crabs can dramatically suppress snail grazing, with large effects on fucoid algal communities. Our results suggest that predator-induced changes in prey behaviour may be an important and under-appreciated component of food web interactions and community dynamics on rocky intertidal shores.  相似文献   

12.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

13.
Predators can affect herbivores both through direct consumption (density-mediated interactions) and by changing behavioural, physiological or morphological attributes of the prey (trait-mediated interactions). These effects on the herbivore can in turn affect the plant through density- and trait-mediated indirect interactions (DMIIs and TMIIs). While the effects of DMIIs and TMIIs imposed by predators has been shown to influence plant density and plant communities, we know little about the effects on plant quality. In addition, the DMII and TMII components of the predator may influence each other so that the total effect of the predator on the plant is not simply the sum of the DMII and TMII. We examined DMIIs and TMIIs between a stinkbug predator and a caterpillar, and show how these interactions affect plant quality, as measured by damage, resistance to herbivores, and a defence chemical, peroxidase. We used novel methods to estimate the independent and non-additive contribution of DMIIs and TMIIs to the plant phenotype. Both predator-induced DMIIs and TMIIs caused decreases in the amount of caterpillar herbivory on plants; a strong non-additive effect between the two resulted from redundancy in their effects. TMIIs initiated by the predator were primarily responsible for a decrease in induced plant resistance. However, DMIIs predominated for reducing the production of peroxidase. These data demonstrate how DMIIs and TMIIs initiated by predators cascade through tri-trophic interactions to affect plant damage and induced resistance.  相似文献   

14.
1. Most communities of insect herbivores are unlikely to be structured by resource competition, but they may be structured by apparent competition mediated by shared natural enemies. 2. The potential of three guilds of natural enemies (parasitoids, fungal entomopathogens and predators) to influence aphid community structure through indirect interactions is assessed. Based on the biology, we predicted that the scope for apparent competition would be greatest for the predator and least for the parasitoid guilds. 3. Separate fully quantitative food webs were constructed for 3 years for the parasitoid guild, 2 years for the pathogen guild and for a single year for the predator guild. The webs were analysed using standard food web statistics designed for binary data, and using information-theory-based metrics that make use of the full quantitative data. 4. A total of 29 aphid, 24 parasitoid, five entomopathogenic fungi and 13 aphid specialist predator species were recorded in the study. Aphid density varied among years, and two species of aphid were particularly common in different years. Omitting these species, aphid diversity was similar among years. 5. The parasitoid web showed the lowest connectance while standard food web statistics suggested the pathogen and predator webs had similar levels of connectance. However, when a measure based on quantitative data was used the pathogen web was intermediate between the other two guilds. 6. There is evidence that a single aphid species had a particularly large effect on the structure of the pathogen food web. 7. The predator and pathogen webs were not compartmentalized, and the vast majority of parasitoids were connected in a single large compartment. 8. It was concluded that indirect effects are most likely to be mediated by predators, a prediction supported by the available experimental evidence.  相似文献   

15.
The non-consumptive effects of predators on prey can affect prey phenotypes, potentially having important consequences for communities due to trait-mediated indirect interactions. Predicting non-consumptive effects and their impacts on communities can be difficult because predators can affect resources directly through nutrient cycling and indirectly by altering prey resource use, which can lead to complex interactions among resources and consumers. In this study we examined the effects of caged dragonfly predators on aquatic resources in the presence and absence of two focal herbivores, the tadpoles of Neotropical tree frogs Agalychnis callidryas and Dendropsophus ebraccatus. We crossed the presence/absence of caged dragonflies with four tadpole treatments: no tadpoles, each tadpole species alone, and both species together to examine interactions among tadpole composition, predator presence, and time on tadpole growth, resources, and zooplankton abundances. Predator effects on growth changed through ontogeny and was species-dependent. Predators initially reduced then dramatically increased A. callidryas growth, but had no effect on D. ebraccatus. Predators also increased the abundances of both periphyton and phytoplankton. However, there was no evidence of a trait-mediated trophic cascade (i.e., tadpole by predator interaction). Instead, nutrients from prey carcass subsidies likely played an increasingly important role in facilitating resources, and shaping tadpole growth, competitive interactions, and zooplankton abundances through time. In nutrient-poor aquatic systems the release of nutrients via the consumption of terrestrially derived prey items by aquatic predators may have important impacts on food webs by facilitating resources independent of the role of trait-mediated trophic cascades.  相似文献   

16.
The effects of predators on the density of their prey can have positive indirect effects on the abundance of the preys resource via a trophic cascade. This concept has strongly influenced contemporary views of how communities are structured. However, predators also can transmit indirect effects by inducing changes in prey traits. We show that the mere presence of predator risk cues can initiate a trophic cascade in rocky shore tide pools. In large (mean surface area =9 m2), natural tide pools, we manipulated crab density and their foraging ability to examine the relative importance of lethal (density-mediated) and non-lethal (trait-mediated) predator effects to algal community development. We found that perceived predation risk reduced snail density as much as the direct predation treatment, showing that green crab predation was not an important factor regulating local snail density. Instead, snail emigration away from resident crabs appears to be the most important factor regulating local snail density. As a result, the abundance of ephemeral green algae was similar in the predation risk and direct predation treatments, suggesting that the consumption of snails by crabs plays a minimal role in mediating the trophic cascade. Increased attention to trait-mediated effects that are transmitted by predator-induced changes in prey behavior may change our view of how predators exert their strong influence on community structure.  相似文献   

17.
Fungal entomopathogens are often studied within the context of their use for biological control, yet these natural enemies are also excellent subjects for studies of ecological interactions. Here, we present selected principles from community ecology and discuss these in relation to fungal entomopathogens. We discuss the relevance of apparent competition, food web construction, intraguild predation and density-mediated and trait-mediated indirect effects. Although current knowledge of community interactions involving fungal entomopathogens are limited, fungal entomopathogens can be important, interactive members of communities and the activities of fungal entomopathogens should be evaluated in the context of ecological principles. We also discuss aspects of metapopulation ecology and the application of these principles to fungal entomopathogens. Knowledge of ecological interactions is crucial if we are to understand and predict the effects of fungal entomopathogens on host populations and understand the interactions among fungal entomopathogens and other organisms in the communities in which they occur.  相似文献   

18.
Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions.  相似文献   

19.
Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish – Opsanus tau), prey (mud crab - Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.  相似文献   

20.
The fear of predators can strongly impact food web dynamics and ecosystem functioning through effects on herbivores morphology, physiology or behaviour. While non‐consumptive predator effects have been mostly studied in three‐level food chains, we lack evidence for the propagation of non‐consumptive indirect effects of apex predators in four level food‐webs, notably in terrestrial ecosystems. In experimental mesocosms, we manipulated a four‐level food chain including top‐predator cues (snakes), mesopredators (lizards), herbivores (crickets), and primary producers (plants). The strength of the trophic cascade induced by mesopredators through the consumption of herbivores decreased in the presence of top‐predator cues. Specifically, primary production was higher in mesocosms where mesopredators were present relative to mesocosms with herbivores only, and this difference was reduced in presence of top‐predator cues, probably through a trait‐mediated effect on lizard foraging. Our study demonstrates that non‐consumptive effects of predation risk can cascade down to affect both herbivores and plants in a four‐level terrestrial food chain and emphasises the need to quantify the importance of such indirect effects in natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号