首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacaj T  Shaham S 《Genetics》2007,176(4):2651-2655
Cell-specific promoters allow only spatial control of transgene expression in Caenorhabditis elegans. We describe a method, using cell-specific rescue of heat-shock factor-1 (hsf-1) mutants, that allows spatial and temporal regulation of transgene expression. We demonstrate the utility of this method for timed reporter gene expression and for temporal studies of gene function.  相似文献   

2.
3.
4.
5.
6.
7.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

8.
9.
W. Shreffler  T. Magardino  K. Shekdar    E. Wolinsky 《Genetics》1995,139(3):1261-1272
Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels.  相似文献   

10.
11.
12.
13.
Transgenic Caenorhabditis elegans expressing jellyfish Green Fluorescent Protein under the control of the promoter for the inducible small heat shock protein gene hsp-16-2 have been constructed. Transgene expression parallels that of the endogenous hsp-16 gene, and, therefore, allows direct visualization, localization, and quantitation of hsp-16 expression in living animals. In addition to the expected upregulation by heat shock, we show that a variety of stresses, including exposure to superoxide-generating redox-cycling quinones and the expression of the human beta amyloid peptide, specifically induce the reporter transgene. The quinone induction is suppressed by coincubation with L-ascorbate. The ability to directly observe the stress response in living animals significantly simplifies the identification of both exogenous treatments and genetic alterations that modulate stress response, and possibly life span, in C. elegans.  相似文献   

14.
15.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

16.
The Wis1-Sty1 mitogen-activated protein (MAP) kinase cascade is one of the major signaling systems involved in a wide range of stress responses in Schizosaccharomyces pombe. It is known that Deltawis1 and Deltasty1 mutants exhibit highly pleiotropic phenotypes, including a phenotype of temperature sensitivity for growth. In this study, we screened multicopy suppressor genes that allow both the Deltawis1 and Deltasty1 mutants to grow simultaneously at a non-permissive temperature, 37 degrees C. Two such multicopy suppressors were cloned and characterized as sds23(+) and hxk2(+) genes. The former is known to specify a protein that functions as a multicopy suppressor for mutations of the PP1 protein phosphatase and the 20S cyclosome/anaphase-promoting complex (APC), and the latter encodes hexokinase 2. It was revealed that the multicopy sds231 gene restored a defect in the mating efficiency caused by the Deltawis1 and Deltasty1 mutations, whereas the multicopy hxk2(+) gene suppressed a phenotype of heat-shock sensitivity for growth of these mutant cells. These findings are discussed with special reference to the Wis1-Sty1 MAP kinase signaling pathway in S. pombe.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号