首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hunter P 《EMBO reports》2012,13(1):20-23
Phages have been used to treat infectious diseases since their discovery nearly a century ago. Modern sequencing and genetic engineering technologies now enable researchers to vastly expand the use of phages as general drug delivery vehicles....it is only in the past five years that the regulatory guidelines for the approval of phage products—both in therapy and food safety—have been createdOver the past decade, bacteriophages have occasionally stirred public and media interest because of their potential as biological weapons against bacterial infections. Such reports have tended to come from Russian or Georgian laboratories, whereas Western research institutes and companies have usually found that phages do not live up to their promise. More than a decade later, however, the view of bacteriophages is set to change. Spurred on by advances in sequencing and other molecular techniques, research into phages has yielded its first applications. Not only are phages proving effective as therapeutic agents, but they are also playing a role in food safety and as delivery vehicles for drugs against a wide range of diseases.Interest in phages as therapeutic agents emerged almost immediately after their discovery nearly a century ago (Twort, 1915; d''Hérelle, 1917). This interest evaporated quickly in the West after the discovery of penicillin, but phage research was kept alive in the old Soviet Union and continued after its collapse in the 1990s. Ongoing studies there, although not always conforming to the most rigorous standards, provided the only evidence of the therapeutic potential of phages.Eventually, especially in the light of the increasing threat from drug-resistant bacteria, Western researchers turned to exploring phages again. However, it is only in the past five years that the regulatory guidelines for the approval of phage products—in both therapy and food safety—have been created. Previously, the US Food and Drug Administration (FDA) had lacked the appropriate regulatory measures; it took them four years to approve the first phage product for use in food safety in 2006. ListShieldTM is a cocktail of several phages that target Listeria monocytogenes, contaminants in meat and poultry products. Approvals for other food safety products have followed with greater speed (Sulakvelidze, 2011). Moreover, in 2008, the FDA approved the first phase 1 clinical trial of phages. This again involved a cocktail of eight phages to target various bacteria including Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, in venous leg ulcers. This trial eventually established the safety of the phage preparation and cleared the way for more phage therapy trials (www.clinicaltrials.gov).The recent acceptance in the West of phages as anti-pathogenic agents was preceded by their use for diagnostic purposes to identify bacteria...The recent acceptance in the West of phages as anti-pathogenic agents was preceded by their use for diagnostic purposes to identify bacteria, according to Martin Loessner from the Institute of Food, Nutrition and Health in Zürich, Switzerland. “It then became possible to [...] harness the specificity of phage for applications such as recognition of the host cell, and also for reporter phage, which is a genetically modified phage with a gene so [you] can easily see the phage''s impact on the target cell,” he explained. “Later on we figured why not go and revisit the idea of using phages against pathogens.”This approach turned out to be highly successful against key food pathogens, Loessner said, because of the way phages work: “[T]he phage has been very finely tuned through zillions of generations in the evolutionary arms race, and is highly specific.” This specificity is important for targeting the few bacteria that cause food poisoning while sparing the bacteria in fermented food—such as soft cheeses—that are harmless and contribute flavour. “The phage is also immune to development of resistance by the host bacteria, because if not it would have become extinct a long time ago,” Loessner said.It is bacterial toxins that cause food poisoning rather than bacteria themselves, so phages are used as a preventive measure to stop the growth of bacteria such as Listeria in the first place. As such, it is important to bombard food products with a large number of phages to ensure that virtually all target bacteria are eradicated. “I always have this magic number of 108, or 100 million per gram of food,” Loessner said. “In 1 g of food there are often only 500 target bacteria, so there is not enough to amplify the phage and you need really high numbers to kill the bacteria in one round of infection.” He added that, in his view, phages would soon become the main treatment for preventing bacterial contamination. “Phage in the near future will be the number one [treatment against] Listeria and Salmonella. It''s becoming number one already, especially in the US.”In Europe, the use of phages in food safety therapy is being held back by the requirement that foods treated with them are labelled as containing viruses, which means they are likely to meet consumer resistance, as happened with foods containing or made from genetically modified organisms. Loessner commented that education is required to raise awareness that the properly controlled use of phages involves minimal risk and could greatly enhance food safety. However, he also emphasized that the use of phages should represent an extra level of protection, not replace existing quality control measures....because phage lysins are often specific to a single bacterial genus, they would allow the specific targeting of pathogenic bacteriaThe ability of phages to target specific bacteria while leaving others alone also has great potential for treating bacterial infections, particularly in the light of increasing antibiotic resistance. Such treatments would not necessarily involve the phage themselves, but rather the use of their lysins—the enzymes that weaken the bacterial cell wall to allow newly formed viruses to exit the host cell. Lysins can be administered as antibiotics, at least for gram-positive bacteria that lack a separate outer membrane around the cell wall. Moreover, because phage lysins are often specific to a single bacterial genus, they would allow the specific targeting of pathogenic bacteria. “The fact that phage lysins leave the commensal microflora undisturbed is particularly significant,” commented Olivia McAuliffe, Senior Research Officer at the Teagasc Food Research Centre in Cork, Ireland. “Most of the antibiotics used clinically have broad-activity spectra and treatment with these antibiotics can have devastating effects on the normal flora, in particular for those taking long-term antibiotic courses.”Phages also have another great advantage over most conventional antibiotics in being potent against both dividing and non-dividing cells. “Because most antibiotics target pathways such as protein synthesis, DNA replication, and cell wall biosynthesis, they can only act when the cells are actively growing,” McAuliffe added. “Because lysins are enzymes, they will chew away the peptidoglycan in both viable and non-viable cells, dividing and non-dividing cells. This would be particularly important in the case of slow-growing organisms that cause infection, an example being Mycobacterium species.”This specificity of phages and their lysins is particularly important for treating chronic conditions resulting from persistent bacterial infection, particularly in the respiratory system or digestive tract. Broad-spectrum antibiotics also attack harmless and beneficial commensal bacteria, and can even worsen the condition by encouraging the growth of resistant bacteria. This is the case with Clostridium difficile, a cause of secondary infections and a major nosocomial (hospital-acquired) antibiotic-resistant pathogen, according to McAuliffe. It is a Gram-positive, rod-shaped, spore-forming bacterium that is the most serious and common cause of diarrhoea and other intestinal disease when competing bacteria in the gut flora have been wiped out by antibiotics. The bacterium and its spores, which form in aerobic conditions outside the body, are widespread in the environment and are present in the guts of 3% of healthy individuals and 66% of infants, according to the UK''s Health Protection Agency. Clostridium spreads readily on the hands of healthcare staff and visitors in hospitals. The ability of the bacteria to form spores resistant to heat, drying and disinfectants, which then adhere to surfaces, enables them to persist in the hospital environment.Because Clostridium is resistant to most conventional antibiotics, it has for some years usually been treated with metronidazole, which exploits the fact that Clostridium is anaerobic during infection. Metronidazole has proven particularly appealing as it has relatively little impact on human cells or commensal aerobic bacteria in the gut as it does not work in the presence of oxygen. But metronidazole does not always work, and physicians have therefore been using vancomycin, a stronger but more toxic antibiotic, as a last resort. Moreover, even in cases where antibiotics seem to eliminate Clostridium and cure the associated diarrhoea, infection recurs in as many as 20% of hospital patients (Kelly & LaMont, 2008). About one-fifth of these 20%, or 4% of the total number of patients succumbing to Clostridium, end up with a long-term infection that at present is difficult to eradicate.This is where phages step in, because they are well tolerated by patients and their specificity means that they will not target other gut bacteria. Clostridium phages have already been demonstrated to work selectively and there is the possibility of extracting lysins against Clostridium from the phage itself; an avenue being pursued by Aidan Coffey''s group at the Department of Biological Sciences at the Cork Institute of Technology in Bishoptown, Ireland.There is also growing interest in using phages to tackle various other infections that are resistant to existing drugs—for example, in wounds that fail to heal, which are a major risk for diabetics. The application of phages in such cases is not new—before penicillin it was often the only option—but the difference now is that modern molecular techniques for isolating bacterial strains from biopsies and matching them to phages greatly increases efficiency. One clinical trial, organized by the Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, is currently recruiting patients to evaluate the use of phage preparations against a range of drug-resistant bacteria, including MRSA (methicillin-resistant Staphylococcus aureus), Enterococcus, Escherichia, Citrobacter, Enterobacter, Klebsiella, Shigella and Salmonella. The intention is to isolate bacterial strains from each patient and to identify matching phages from the Institute''s bacteriophage collection in Wrocław.Although the potential of phages or their lysins to combat bacterial pathogens, whether in food or those causing infectious diseases, has long been recognized, more recent work has identified new applications as delivery vehicles for vaccines or cytotoxic drugs to treat cancer. These applications do not exploit the phage''s natural targeting of bacteria, but make use of their ability to carry surface ligands that attract them to specific host cells.Even though phages do not attack human cells, they elicit an immune response and can be used as vectors to carry an engineered antigen on their surface to vaccinate against viral or bacterial disease. This approach has been tested in rabbits with a DNA vaccine against hepatitis B (Clark et al, 2011). The study compared the phage DNA vaccine with Engerix B—a commercially available vaccine based on a homologous recombinant protein—and found that the phage vaccine produced a significantly higher antibody response more quickly, as well as being potentially cheaper to produce and stable at a wider range of temperatures. This hepatitis B vaccine is now being developed by the UK biotech firm BigDNA in Edinburgh, Scotland, which has been granted a European patent, pending future clinical trials in humans.Modified phages could also serve as nanoparticles to deliver cytotoxic drugs straight to tumour cells, bypassing healthy cellsModified phages could also serve as nanoparticles to deliver cytotoxic drugs straight to tumour cells, bypassing healthy cells. Phages are a promising candidate vehicle because they can be readily engineered both to display appropriate ligands for targeting tumour cells specifically, and to carry a cytotoxic payload that is only released inside the target. One Israeli group has developed a technology for manufacturing phage nanoparticles that in principle can be used to target drugs to either tumour cells or pathogens (Bar et al, 2008). The group chose one particular phage family, known as filamentous phages, because of their small size and the relative ease of engineering them. Filamentous phages comprise just 10 genes with a sheath of several thousand identical α-helical coat proteins in a helical array assembled around a single-stranded circular DNA molecule. The Israeli scientists combine genetic modification and chemical engineering to create a phage that is able to attach to its target cell and release cytotoxic molecules. “Genetic engineering makes it possible to convert the phage to a targeted particle by displaying a target-specifying molecule on the phage coat,” explained Itai Benhar from Tel-Aviv University, the lead author of the paper. “Genetic engineering also makes it possible to design a drug-release mechanism. Finally chemical engineering makes it possible to load the particle with a large payload of cargo.”The group has used the same approach to target two bacteria species, Staphylococcus aureus and Escherichia coli, with the antibiotic chloramphenicol, which was first developed in 1949 but has raised concerns over its toxicity. According to the Israeli group, the phage nanoparticle loaded with the drug was 20,000 times more potent against both bacteria than the drug administered on its own. Just as importantly, the phage particles do not affect other cells. The overall advantage of the phage-based delivery approach is that it can deliver highly effective and toxic drugs in a safe way. The other point is that this and other methods in which phages are engineered to reach specific targets have nothing directly to do with the natural ability of phage viruses to attack bacteria. “The phage''s natural ability to infect bacteria is totally irrelevant to their application for targeting non-bacterial cells,” said Benhar. “In fact, they are not relevant for targeting bacteria either in this case, since the chemical modification we subject the phages to renders them non-infective.”However, the phage nanoparticles retain their immunogenic effect, which is a problem if the objective is merely to deliver a drug to the target while minimizing all other impacts. “Phages are immunogenic, and although we found a way to reduce their immunogenicity we did not totally eliminate it,” Benhar said. The other challenge is that, as the particles carry the payload drug on their surface, the physical and chemical properties change every time a new drug is loaded. Although the payload itself is inert until it reaches the target, the varying characteristics could alter the host response and therefore affect regulatory approval for each new phage construct, as safety would have to be demonstarted in each case.The use of phages is no longer confined to directly attacking infectious bacteria, but has vastly expanded in terms of methods, applications and the diseases that can be tackledNevertheless, this approach holds great promise as a novel way of delivering not just new drugs but also existing ones that are effective but too toxic for healthy cells. This is exactly the most exciting aspect of recent therapeutic phage research. The use of phages is no longer confined to directly attacking infectious bacteria, but has vastly expanded in terms of methods, applications and the diseases that can be tackled.  相似文献   

2.
近年来,噬菌体由于其特异性侵染细菌的特性,在食品加工及保藏过程中有害微生物的控制和检测方面展现出良好的应用前景。例如在食品表面喷洒噬菌体或将噬菌体与食品包装材料结合,对食源性致病菌及腐败菌加以控制,以及利用基因工程手段构建报告噬菌体对食源性致病菌进行快速检测等。然而,噬菌体也是危害食品发酵的重要因素之一,轻则减产,重则引起整个发酵过程失败,造成巨大的经济损失。目前主要通过噬菌体消毒及灭活、发酵菌种变换等方式防止噬菌体污染。本文综述了食品工业中噬菌体应用及危害的研究现状,以期为拓宽噬菌体在食品工业中的应用途径及开发噬菌体污染防治的新技术提供理论依据。  相似文献   

3.
A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.  相似文献   

4.
Lactic acid bacteria are industrial microorganisms used in many food fermentations.Lactococcus species are susceptible to bacteriophage infections that may result in slowed or failed fermentations. A substantial amount of research has focused on characterizing natural mechanisms by which bacterial cells defend themselves against phage. Numerous natural phage defense mechanisms have been identified and studied, and recent efforts have improved phage resistance by using molecular techniques. The study of how phages overcome these resistance mechanisms is also an important objective. New strategies to minimize the presence, virulence, and evolution of phage are being developed and are likely to be applied industrially.  相似文献   

5.
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.  相似文献   

6.
Bacteriocins: developing innate immunity for food   总被引:14,自引:0,他引:14  
Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.  相似文献   

7.
Bacteriophages as biocontrol agents of food pathogens   总被引:1,自引:0,他引:1  
Bacteriophages have long been recognized for their potential as biotherapeutic agents. The recent approval for the use of phages of Listeria monocytogenes for food safety purposes has increased the impetus of phage research to uncover phage-mediated applications with activity against other food pathogens. Areas of emerging and growing significance, such as predictive modelling and genomics, have shown their potential and impact on the development of new technologies to combat food pathogens. This review will highlight recent advances in the research of phages that target food pathogens and that promote their use in biosanitation, while it will also discuss its limitations.  相似文献   

8.
Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.  相似文献   

9.
In recent years it has become widely recognized that bacteriophages have several potential applications in the food industry. They have been proposed as alternatives to antibiotics in animal health, as biopreservatives in food and as tools for detecting pathogenic bacteria throughout the food chain. Bacteriophages are viruses that only infect and lyse bacterial cells. Consequently, they display two unique features relevant in and suitable for food safety. Namely, their safe use as they are harmless to mammalian cells and their high host specificity that allows proper starter performance in fermented products and keeps the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about ‘edible viruses’. In this review, we examine the promising uses of phages for the control of foodborne pathogens and the drawbacks on which more research is needed to further exploit these biological entities.  相似文献   

10.
Bacteriophage isolation from environmental samples has been performed for decades using principles set forth by pioneers in microbiology. The isolation of phages infecting Arthrobacter hosts has been limited, perhaps due to the low success rate of many previous isolation techniques, resulting in an underrepresented group of Arthrobacter phages available for study. The enrichment technique described here, unlike many others, uses a filtered extract free of contaminating bacteria as the base for indicator bacteria growth, Arthrobactersp. KY3901, specifically. By first removing soil bacteria the target phages are not hindered by competition with native soil bacteria present in initial soil samples. This enrichment method has resulted in dozens of unique phages from several different soil types and even produced different types of phages from the same enriched soil sample isolate. The use of this procedure can be expanded to most nutrient rich aerobic media for the isolation of phages in a vast diversity of interesting host bacteria.  相似文献   

11.
It has been demonstrated that strains of Bordetella pertussis used for vaccine production contain temperate phages. It can be conducted from many experiments performed in our laboratory. that 10–100 phages per 1010 bacteria are released. However, the production of bacterial mass is not markedly influenced by lysogeny. Strains of Bordetella bronchiseptica used for production of vaccine against Rhinitis atrophicans of pigs have temperate phages too. These phages may cause a complete lysis during a submerse cultivation. The phages of Bordetella pertussis and Bordetella bronchiseptica can be propagted on Bordetella parapertussis.  相似文献   

12.
Any bacterial strain can be infected by virulent phages or harbour one or more prophages. Therefore, bacteria-phage interactions are to be regarded as fundamental properties of bacteria. In current industrial fermentation processes phages can be advantageously employed for the identification of bacterial production strains (phage typing). In some cases phages are involved in the production of enzymes and special substances. The fundamental importance of phages in any technical fermentation process, however, is based on the peculiarities of their obligately parasitic life cycle. The propagation of phages in fermentation processes can cause complete (or at least partial) lysis of the production strains and, consequently, serious disturbances in the production process and considerable economic losses. The phage problem in the fermentation industry has not yet been completely solved. For the protection of technical processes against virulent phages five measures are discussed: phage-protected sterile fermentation, employment of alternative cultures, employment of phage-resistant mutants, employment of phage inhibitors, and employment of immobilized bacterial cells. The problem of the protection of bacterial production strains from prophage induction is more difficult and practically unsolved. Two possibilities to minimize the process risk due to temperate phages, the elimination of inducing factors during the fermentation process, and the selection of production strains which are difficult to induce, are discussed.  相似文献   

13.
The ecological, epidemiological, and evolutionary consequences of host-parasite interactions are critically shaped by the spatial scale at which parasites adapt to hosts. The scale of interaction between hyperparasites and their parasites is likely to be influenced by the host of the parasite and potentially likely to differ among within-host environments. Here we examine the scale at which bacteriophages adapt to their host bacteria by studying natural isolates from the surface or interior of horse chestnut leaves. We find that phages are more infective to bacteria from the same tree relative to those from other trees but do not differ in infectivity to bacteria from different leaves within the same tree. The results suggest that phages target common bacterial species, including an important plant pathogen, within plant host tissues; this result has important implications for therapeutic phage epidemiology. Furthermore, we show that phages from the leaf interior are more infective to their local hosts than phages from the leaf surface are to theirs, suggesting either increased resistance of bacteria on the leaf surface or increased phage adaptation within the leaf. These results highlight that biotic environment can play a key role in shaping the spatial scale of parasite adaptation and influencing the outcome of coevolutionary interactions.  相似文献   

14.
Primarily outside the scientific community, misapprehensions and misinformation about recombinant DNA-modified (also known as 'genetically modified', or 'GM') plants have generated significant 'pseudo-controversy' over their safety that has resulted in unscientific and excessive regulation (with attendant inflated development costs) and disappointing progress. But pseudo-controversy and sensational claims have originated within the scientific community as well, and even scholarly journals' treatment of the subject has been at times unscientific, one-sided and irresponsible. These shortcomings have helped to perpetuate 'The Big Lie' - that recombinant DNA technology applied to agriculture and food production is unproven, unsafe, untested, unregulated and unwanted. Those misconceptions, in turn, have given rise to unwarranted opposition and tortuous, distorted public policy.  相似文献   

15.
After an illustrious history as one of the primary tools that established the foundations of molecular biology, bacteriophage research is now undergoing a renaissance in which the primary focus is on the phages themselves rather than the molecular mechanisms that they explain. Studies of the evolution of phages and their role in natural ecosystems are flourishing. Practical questions, such as how to use phages to combat human diseases that are caused by bacteria, how to eradicate phage pests in the food industry and what role they have in the causation of human diseases, are receiving increased attention. Phages are also useful in the deeper exploration of basic molecular and biophysical questions.  相似文献   

16.
There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.  相似文献   

17.
1. The effects of nutrients on the temporal variation in viral assemblage composition, and in particular the occurrence of temperate phages, were assessed in mesotrophic Lake Erken over 5 months of the ice‐free period. The percentage of the bacterial community that contained inducible prophages (lysogenic bacteria, LB) changed over the season, being lowest in late spring and highest in early autumn. The most important variables for predicting LB were concentrations of total nitrogen (TN), total phosphorus (TP) and temperature. 2. The viral assemblage composition, as determined by pulsed‐field gel electrophoresis (PFGE), also changed over the season. Prophages were induced by incubations with mitomycin C and we show, for the first time for natural communities, that the resulting temperate phages could be detected using PFGE. 3. A substantial fraction (19%) of the number of detected operational taxonomic units (OTUs: defined as unique genome sizes) appeared unique to temperate phages and 41% of OTUs increased in relative abundance after treatment with mitomycin C. 4. Different viral OTUs were induced at different times during the season. The most important environmental factor covarying with viral assemblage composition over the period of study, as determined by multivariate analysis, was concentration of TP. In re‐growth cultures with natural bacteria and lowered viral abundance (VA) (decreased virus to bacteria ratio), addition of PO4‐P induced prophages and resulted in subsequent production of temperate phages, as indicated by a decreased percentage of LB and increased VA. Incubations of natural bacterial communities with mitomycin C (field data) or PO4‐P (experiment) changed the viral assemblage composition at a similar rate as the observed monthly changes in the lake.  相似文献   

18.
At a time when consumers are demanding the partial or complete removal of chemically synthesized preservatives from foods, there is also an increased demand for convenience foods with long shelf-lives. These consumer-led trends have fuelled a renewed interest in the development of ‘more natural’ preservatives for extending the shelf-life and maintaining the safety of foods. Although the antimicrobial properties of many compounds from plant, animal and microbial sources have been reported, their potential for use as natural food preservatives has not been fully exploited. In this paper, the possible uses of natural antimicrobial compounds as food preservatives, used either singly or in combination, are explored. Specific examples are given from a current transnational research project on Natural Antimicrobial Systems sponsored jointly by the European Commission and a consortium of eight food companies. The results of trials with a range of potential natural preservatives including lytic enzymes, bacteriocins from lactic acid bacteria and plant antimicrobials in laboratory media and in a variety of foods and beverages including apple juice, milk, hard-cooked cheese (Emmental) and fresh fruit slices are discussed.  相似文献   

19.
Fermentation technology has become a modern method for food production the last decades as a process for enhancing product stability, safety and sensory standards. The main reason for this development is the increasing consumers’ demand for safe and high quality food products. The above has led the scientific community to the thorough study for the appropriate selection of specific microorganisms with desirable properties such as bacteriocin production, and probiotic properties. The main food products produced through fermentation activity are bread, wine, beer cheese and other dairy products. The microorganisms conducting the above processes are mainly yeasts and lactic acid bacteria. The end products of carbohydrate catabolism by these microorganisms contribute not only to preservation as it was believed years ago, but also to the flavour, aroma and texture and to the increase of the nutritional quality by thereby helping determine unique product characteristics. Thus, controlling the function of specific microorganisms or the succession of microorganisms that dominate the microflora is therefore advantageous, because it can increase product quality, functionality and value. Throughout the process of the discovery of microbiological diversity in various fermented food systems, the development of starter culture technology has gained more scientific attention, and it could be used for the control of the manufacturing operation, and management of product quality. In the frame of this review the presentation of the quality enhancement of most consumed fermented food products around the world is attempted and the new trends in production of fermented food products, such as bread is discussed. The review is focused in kefir grains application in bread production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号