首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the association between an angiogenin gene polymorphism and blood pressure (BP) at rest and in response to acute exercise before and after a 20-wk endurance-training program. Subjects were 737 normotensive and borderline hypertensive subjects (257 black and 480 white). The polymorphism was detected by PCR and digestion with AvaII, yielding an allele of 253 bp or a rare allele of 194 + 59 bp. Resting and exercise [50 W; 60, 80, and 100% of maximal O2 consumption (VO2 max)] systolic (SBP) and diastolic BP were determined before and after training. Among blacks, adjusted SBP in the sedentary state was significantly lower in carriers of the rare allele at rest and exercise intensities of 60, 80, and 100% of VO2 max. In the trained state, carriers of the rare allele had a significantly (P < 0.05) lower SBP than did noncarriers at rest and at 80 and 100% of VO2 max. The genotypic effect observed among blacks was not evident among whites. Furthermore, change in BP (after--before) was not significantly associated with the genotype. In conclusion, the angiogenin gene AvaII polymorphism is associated with a lower SBP at rest and in response to acute high-intensity exercise in blacks but not in whites.  相似文献   

2.
Cardiovascular regulation during head-out water immersion exercise   总被引:1,自引:0,他引:1  
Head-out water immersion is known to increase cardiac filling pressure and volume in humans at rest. The purpose of the present study was to assess whether these alterations persist during dynamic exercise. Ten men performed upright cycling exercise on land and in water to the suprasternal notch at work loads corresponding to 40, 60, 80, and 100% maximal O2 consumption (VO2max). A Swan-Ganz catheter was used to measure right atrial pressure (PAP), pulmonary arterial pressure (PAP), and cardiac index (CI). Left ventricular end-diastolic (LVED) and end-systolic (LVES) volume indexes were assessed with echocardiography. VO2max did not differ between land and water. RAP, PAP, CI, stroke index, and LVED and LVES volume indexes were significantly greater (P less than 0.05) during exercise in water than on land. Stroke index did not change significantly from rest to exercise in water but increased (P less than 0.05) on land. Arterial systolic blood pressure did not differ between land and water at rest or during exercise. Heart rates were significantly lower (P less than 0.05) in water only during the two highest work intensities. The results indicate that indexes of cardiac preload are greater during exercise in water than on land.  相似文献   

3.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

4.
Military antishock trousers (MAST) inflated to 50 mmHg were used with 12 healthy males (mean age 28 +/- 1 yr) to determine the effects of lower-body positive pressure on cardiac output (Q), stroke volume (SV), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), total peripheral resistance (TPR), and O2 uptake (VO2) during graded arm-cranking exercise. Subjects were studied while standing at rest and at 25, 50, and 75% of maximal arm-cranking VO2. At each level, rest or work was continued for 6 min with MAST inflated and for 6 min with MAST deflated. Order of inflation and deflation was alternated at each experimental rest or exercise level. Measurements were obtained during the last 2 min at each level. Repeated-measures analysis of variance revealed significant increases (P less than 0.001) in Q, SV, and MABP and a consistent decrease in HR with MAST inflation. There was no apparent change in Q/VO2 between inflated and control conditions. There was no effect of MAST inflation on VO2 or TPR. MAST inflation counteracts the gravitational effect of venous return in upright exercise, restoring central blood volume and thereby increasing Q and MABP from control. HR is decreased consequent to increased MABP through arterial baroreflexes. The associated decrease in TPR is not observed, being offset by the mechanical compression of leg vasculature with MAST inflation.  相似文献   

5.
The objective of our study was to compare the cardiovascular effects of moderate exercise training in healthy young (NTS, n=18, 22.9+/-0.44 years) and in hypertensive human subjects (HTS, n=30, 23+/-1.1). The VO(2max) did not significantly differ between groups. HTS of systolic blood pressure (SBP) 148+/-3.6 mmHg and diastolic blood pressure(DBP) 88+/-2.2 mmHg, and NTS of SBP: 128.8 +/- 4 mmHg and DBP: 72 +/- 2.9 mmHg were submitted to moderate dynamic exercise training, at about 50% VO(2max) 3 times per week for one hour, over 3 months. VO(2max) was measured by Astrand's test. Arterial blood pressure was measured with Finapres technique, the stroke volume, cardiac output and arm blood flow were assessed by impedance reography. Variability of SBP and pulse interval values (PI) were estimated by computing the variance and power spectra according to FFT algorithm. After training period significant improvements in VO(2max) were observed in NTS- by 1.92 +/-0.76 and in HTS by 3+/-0.68 ml/kg/min). In HTS significantly decreased: SBP by 19 +/-2.9 mmHg, in DBP by 10.7+/-2 mmHg total peripheral resistance (TPR) by 0.28 +/-0.05 TPR units. The pretraining value of low frequency component power spectra SBP (LF(SPB)) was significantly greater in HTS, compared to NTS. PI variance was lower in HTS, compared to NTS. After physical training, in HTS PI variance increased suggesting a decrease in frequency modulated sympathetic activity and increase in vagal modulation of heart rate in mild hypertension. A major finding of the study is the significant decrease of resting low frequency component SBP power spectrum after training in HTS. The value of LF(SPB) in trained hypertensive subjects normalized to the resting level of LF(SPB) in NTS. Our findings suggest that antihypertensive hemodynamic effects of moderate dynamic physical training are associated with readjustment of the autonomic cardiovascular control system.  相似文献   

6.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

7.
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to evaluate the influence of the single-breath pulmonary diffusing capacity (DLCO) breath-hold maneuver on central hemodynamics. Ten men (mean age 24 yr) were studied at rest, during 40 min of cycling at 40 and 60% of peak O2 uptake, and 10 min into recovery. DLCO was measured in the seated position during a 10-s breath hold at total lung capacity. At rest the breath hold caused a significant fall in stroke volume (SV, -16%) and an increase in heart rate (HR, +20%) with no change in cardiac output (Q). The resting DLCO of 36.5 ml.min-1.mmHg-1 increased by 28 and 48%, respectively, during the low- and moderate-intensity cycling. The breath hold while cycling caused a significant decrease in SV and Q, but HR did not change. Likewise, during recovery SV and Q fell with the breath hold but again HR did not change. A significant fall in systolic (-17%), diastolic (-12.5%), and mean arterial pressure (-15%) occurred during the breath hold at rest and during and after the exercise. The reduction observed in SV and blood pressure most likely reflected a decrease in venous return. The differences observed in the HR response before, compared with during and after exercise, were consistent with a resetting or shift in the operating point of the arterial baroreflex. Because blood flow fell during the exercise and recovery breath-hold maneuver, the "true" DLCO may have been underestimated during and after cycling.  相似文献   

9.
To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced by 35% (P < 0.001). Forty-one percent of the reduction in CaO2 was explained by the lower inspired O2 pressure (PiO2) in hypoxia, whereas the rest was due to the impairment of the pulmonary gas exchange, as reflected by the higher alveolar-arterial O2 difference in hypoxia (P < 0.05). Hypoxia caused a 47% decrease in VO2 max (a greater fall than accountable by reduced CaO2). Peak cardiac output decreased by 17% (P < 0.01), due to equal reductions in both peak heart rate and stroke VOlume (P < 0.05). Peak leg blood flow was also lower (by 22%, P < 0.01). Consequently, systemic and leg O2 delivery were reduced by 43 and 47%, respectively, with hypoxia (P < 0.001) correlating closely with VO2 max (r = 0.98, P < 0.001). Therefore, three main mechanisms account for the reduction of VO2 max in severe acute hypoxia: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max.  相似文献   

10.
The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO?max): 58 ± 7 ml·kg?1·min?1] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.  相似文献   

11.
The purpose of this study was to investigate the changes of maximal oxygen consumption, left ventricular function and serum lipids after 36 weeks of aerobic exercise in elderly women without the influence of drugs. Eight elderly women were studied by M-mode and Doppler echocardiography to assess left ventricular size, mass and function. Maximal oxygen consumption (VO(2)max) was determined for each subject by administering a treadmill exercise test. The training intensity was decided by heart rate reserve. Subjects performed exercise for 40 minutes a day, 3 days a week at 50-60% of the heart rate reserve during the 36 weeks. Exercise capacity was assessed by VO(2)max with a graded exercise test of the treadmill. Weight and % body fat decreased after training. Cardiorespiratory function improved because of the increase in VO(2)max and VO(2)max normalized for body weight after training. Systolic blood pressure significantly decreased. There are no significant difference in all left ventricular's parameters (end-diastolic dimension, end-systolic dimension, end-diastolic volume, end-systolic volume, stroke volume, cardiac output, ejection fraction, fractional shortening) after 36 weeks. Exercise training did not induce left ventricular (LV) enlargement as evidence of an absence of increase in left ventricular end-diastolic volume. The total cholesterol level and triglyceride level decreased after training. High density lipoprotein-cholesterol significantly increased and low density lipoprotein-cholesterol significantly decreased, atherogenic index (AI) significantly decreased and apolipoprotein A-I increased and apolipoprotein B decreased after training. In conclusion, although there was no significant change in left ventricular function, aerobic training showed a positive influence on body composition, maximal oxygen consumption and serum lipids.  相似文献   

12.
In this study we determined whether the decline in exercise stroke volume (SV) observed when endurance-trained men stop training for a few weeks is associated with a reduced blood volume. Additionally, we determined the extent to which cardiovascular function could be restored in detrained individuals by expanding blood volume to a similar level as when trained. Maximal O2 uptake (VO2max) was determined, and cardiac output (CO2 rebreathing) was measured during upright cycling at 50-60% VO2max in eight endurance-trained men before and after 2-4 wk of inactivity. Detraining produced a 9% decline in blood volume (5,177 to 4,692 ml; P less than 0.01) during upright exercise, due primarily to a 12% lowering (P less than 0.01) of plasma volume (PV; Evans blue dye technique). SV was reduced by 12% (P less than 0.05) and VO2max declined 6% (P less than 0.01), whereas heart rate (HR) and total peripheral resistance (TPR) during submaximal exercise were increased 11% (P less than 0.01) and 8% (P less than 0.05), respectively. When blood volume was expanded to a similar absolute level in the trained and detrained state (approximately 5,500 +/- 200 ml) by infusing a 6% dextran solution in saline, the effects of detraining on cardiovascular response were reversed. SV and VO2max were increased (P less than 0.05) by PV expansion in the detrained state to within 2-4% of trained values. Additionally, HR and TPR during submaximal exercise were lowered to near trained values. These findings indicate that the decline in cardiovascular function following a few weeks of detraining is largely due to a reduction in blood volume, which appears to limit ventricular filling during upright exercise.  相似文献   

13.
We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.  相似文献   

14.
Nasal airflow resistances were studied in 20 healthy subjects at rest, with exercise, and during recovery from exercise. Resistances were first measured under resting conditions. As a basis for comparison 0.1% xylometazoline was applied by insufflation; it reduced nasal resistance by an average of 49%. On a subsequent occasion, the degree and time course of changes in resistance were measured 1) during 5-min exercise bouts at rest 25, 50, and 75% of predicted maximum O2 intake (VO2max), 2) during 5-, 10-, and 15-min exercise bouts at 50% of VO2max, and 3) during recovery from exercise. Resistance decreased with intensity but not duration of exercise; an initial sudden decrease was followed by a more gradual but progressive decrease, which continued for several minutes following vigorous short duration exercise. Thus following 5 min of effort at 75% of VO2max, resistance reached a nadir (46% fall) 5 min after cessation of exercise. Recovery of preexercise values required 5 min after 5 min of exercise at 25% of VO2max and 10 min after 5 min of exercise at 50% of VO2max. Some decrease persisted 15 min after 5 min of exercise at 75% of VO2max.  相似文献   

15.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

16.
The purpose of the study was to evaluate the dynamics of diastolic and systolic function from rest to maximal exercise using conventional echocardiography and tissue Doppler imaging (TDI) in obese prepubertal boys compared to age‐matched lean controls. Eighteen obese (10 with first degree obesity and 8 with second degree obesity according to French curves, BMI: 23.3 ± 1.8 and 29.0 ± 2.0 kg/m2, respectively) and 17 lean controls (BMI = 17.6 ± 0.6 kg/m2, P < 0.001), aged 10–12 years were recruited. After resting echocardiography, all children performed a maximal exercise test. Regional diastolic and systolic myocardial velocities were acquired at rest and each workload. Stroke volume and cardiac output were calculated. At rest, obese boys had greater left ventricular (LV) diameters and LV mass. Boys in the first degree group showed no diastolic or systolic dysfunction, whereas boys with second degree obesity showed subtle diastolic dysfunction. During exercise, both obese groups showed greater stroke volume and cardiac output. First degree obese boys exhibited greater systolic and diastolic tissue Doppler velocities than controls, whereas second degree obese boys had lower diastolic tissue velocities irrespective of exercise intensity and lower fractional shortening at high exercise intensities than controls. In conclusion, no impairment in diastolic or systolic function is noticed in prepubertal boys with first degree of obesity. Enhanced regional myocardial function response to exercise was also demonstrated in this population, suggesting adaptive compensatory cardiac changes in mild obesity. However, when obesity becomes more severe, impaired global and regional cardiac function at rest and during exercise can be observed.  相似文献   

17.
A group of orthotopic heart transplant (OHT, n = 28) and heart surgery (n = 19) patients, with similar ejection fractions and left ventricular end-diastolic pressures, were exercised to symptom-limited maximum to describe differences in cardiovascular and gas exchange responses. Testing was performed at a mean of 3 and 6 mo after surgery, respectively (P less than 0.05). OHT patients have a greater resting systolic and diastolic blood pressure (P less than 0.01) and a significantly greater (P less than 0.01) heart rate (HR) at rest in the supine and standing positions and during minutes 2 through 7 of supine recovery. Peak treadmill time was significantly less (P less than 0.01) in OHT patients. No significant differences were found for systolic blood pressure (SBP) during recovery, peak HR, ventilation, relative O2 uptake (VO2), body weight, ventilatory equivalents for O2 and CO2, O2 pulse, and HR-SBP product (peak HR x peak SBP). Peak pulse pressure, heart rate reserve, total VO2, and absolute VO2 at ventilatory threshold were significantly lower (P less than 0.01) in the OHT patients. We concluded that 1) complete cardiac decentralization is evident, 2) the significantly reduced VO2 at ventilatory threshold should be considered when activities of daily living are prescribed, and 3) SBP response is more appropriate than HR for assessing recovery of the decentralized heart after maximal exercise.  相似文献   

18.
The aim of the study was to analyze the effects produced by the use of experimental program (Nordic polewalking) on functional abilities in elderly women. Three-month polewalking led to reduction in the pulse rate at rest, diastolic and systolic blood pressure at the level of significance of 0.01 (p = 0.000). Polewalking improved the values of fitness index (FITIND) and maximal oxygen consumption (VO2max) at the level of significance of 0.01 (p = 0.000). On final measurement, three variables, i.e. pulse rate at rest - HRR (E = 73.42 vs. C = 79.68), systolic blood pressure - BPS (E = 118.42 vs. C = 123.65) and diastolic blood pressure - BPD (E = 79.04 vs. C = 83.54), showed lower results in experimental group compared with control group. On final measurement, experimental group showed higher values of the FITIND (E = 81.79 vs. C = 62.66) and VO2max (E = 21.83 vs. C = 16.81) variables as compared to control group. Accordingly, such a moderate physical activity, which is not too vigorous yet intensive enough to induce favorable changes, appears to be recommendable for elderly women. The present study included 60 women from the Novi Sad community, mean age 58.5 +/- 6.90 years, mean body mass 70.9 +/- 15.32 kg and mean body height 164.8 +/- 7.24 cm. Study population was divided into two groups of 30 subjects: experimental (E) group and control (C) group. The experimental program was performed three times a week for three months. The Nordic walking program was so designed for the performers to be in the aerobic work zone throughout the exercise. Nordic walking with poles was performed over three months. Study results revealed functional abilities of the study women to have modified during the longitudinal process.  相似文献   

19.
1. Comparisons of the effects of 4 and 16 weeks of exercise were made on; cardiac output, stroke volume, heart rate, left intraventricular systolic and diastolic pressures, dP/dt, and heart calcium in the Bio 14.6 cardiomyopathic and F1 B hamsters. 2. In the cardiomyopathic hamster the cardiac output, stroke volume, left intraventricular systolic pressure and dP/dt, which were all depressed in the age related sedentary animals, were increased by both periods of exercise. The left intraventricular diastolic pressure which was elevated was likewise decreased by both exercise periods. Only the 16 week exercise period decreased the resting heart rate. 3. In the normal F1 B hamster, both periods of exercise increased the cardiac output and stroke volume while the left intraventricular systolic pressure was decreased. Only the 16 week exercise decreased the resting heart rate and left intraventricular diastolic pressure and increased the left ventricular dP/dt. 4. Both periods of exercise increased the total heart calcium in the Bio 14.6 hamster while the heart calcium in the F1 B was increased only by the 16 week exercise period.  相似文献   

20.
To determine effects on metabolic responses, subjects were exposed to four environmental conditions for 90 min at rest followed by 30 min of exercise: breathing room air with an ambient temperature of 25 degrees C (NN); breathing room air with an ambient temperature of 8 degrees C (NC); hypoxia (induced by breathing 12% O2 in N2) with a neutral temperature (HN); and hypoxia in the cold (HC). Hypoxia increased heart rate (HR), systolic blood pressure (SBP), pulmonary ventilation (VE), respiratory exchange ratio (R), blood lactate, and perceived exertion during exercise while depressing rectal temperature (Tre) and O2 uptake (VO2). Cold exposure elevated SBP, diastolic blood pressure (DBP), VE, VO2, blood glucose, and blood glycerol but decreased HR, Tre, and R. Shivering and DBP were higher and Tre was lower in HC compared with NC. HR, SBP, VE, R, and lactate tended to be higher in HC compared with NC, whereas VO2 and blood glycerol tended to be depressed. These results suggest that cold exposure during hypoxia results in an increased reliance on shivering for thermogenesis at rest whereas, during exercise, heat loss is accelerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号