首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.  相似文献   

2.
An ultimate goal of gene therapy is the development of a means to correct mutant genomic sequences in the cells that give rise to pathology. A number of oligonucleotide-based gene-targeting strategies have been developed to achieve this goal. One approach, small fragment homologous replacement (SFHR), has previously demonstrated disease-specific genotypic and phenotypic modification after introduction of small DNA fragments (SDFs) into somatic cells. To validate whether the gene responsible for sickle cell anemia (beta-globin) can be modified by SFHR, a series of studies were undertaken to introduce sickle globin sequences at the appropriate locus of human hematopoietic stem/progenitor cells (HSPCs). The characteristic A two head right arrow T transversion in codon 6 of the beta-globin gene was indicated by restriction fragment length polymorphic (RFLP) analysis of polymerase chain reaction (PCR) products generated by amplification of DNA and RNA. At the time of harvest, it was determined that the cells generally contained 相似文献   

3.
BACKGROUND: Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. METHODS: Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. RESULTS: By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. CONCLUSIONS: These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures.  相似文献   

4.
5.
Pluripotent, self-renewing, hematopoietic stem cells are considered good targets for gene modification to treat a wide variety of disorders. However, as many genes are expressed in a stage-specific manner during the course of hematopoietic development, it is necessary to establish a lineage-specific gene expression system to ensure the proper expression of transduced genes in hematopoietic stem cells. In this study, we constructed a VSV-G-pseudotyped, human immunodeficiency virus type 1-based, self-inactivating lentivirus vector that expressed green fluorescent protein (GFP) under the control of the human CD41 (glycoprotein 2b; GP2b) promoter; this activity is restricted to megakaryocytic lineage cells. The recombinant virus was used to infect human peripheral blood CD34+ (hematopoietic stem/progenitor) cells, and lineage-specific gene expression was monitored with GFP measurements. The analysis by FACS determined that GFP expression driven by the GP2b promoter was restricted to megakaryocytic progenitors and was not present in erythrocytes. Furthermore, in the hematopoietic colony-forming assay, GFP expression was restricted to colony-forming units-megakaryocyte (CFU-Meg) colonies under the control of the GP2b promoter, whereas all myeloid colonies (burst-forming units-erythroid, colony-forming units-granulocyte-macrophage, and CFU-Meg) expressed GFP when the transgene was regulated by the cytomegalovirus promoter. These results demonstrated lineage-specific expression after gene transduction of hematopoietic stem cells. The application of this vector system should provide a useful tool for gene therapy to treat disorders associated with megakaryocyte (platelet) dysfunction.  相似文献   

6.
Gene targeting through homologous recombination in murine embryonic stem (ES) cells is already strongly suppressed by DNA mismatch-repair (MMR)-dependent anti-recombination when targeting construct and target locus differ at <1% of the nucleotide positions. We demonstrate that MMR activity also raises a strong impediment to gene modification mediated by small synthetic DNA oligonucleotide sequences. In the absence of the DNA MMR gene MSH2, synthetic single-stranded deoxyribo-oligonucleotides can be used to site-specifically modify the ES cell genome. We show that PCR-based procedures can be used to identify and clone modified cells. By this method we have substituted a single codon in the retinoblastoma gene.  相似文献   

7.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

8.
G Podsakoff  K K Wong  Jr    S Chatterjee 《Journal of virology》1994,68(9):5656-5666
Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.  相似文献   

9.
Gene targeting and site-specific recombination strategies allow the precise modification of the eukaryotic genome. Many of the recombination strategies currently used, however, will introduce a selection marker gene at the modified site. DNA sequences of prokaryotic origin like vector sequences, selection marker, and reporter genes have been shown to markedly influence the regulation of the modified genomic loci. In order to avoid the insertion of excess sequences, a biphasic recombination strategy involving homologous recombination and Cre-recombinase-mediated cassette exchange (RMCE) was devised and used to insert a foreign gene into the beta-casein gene in murine embryonic stem cells. The incompatibility of the heterospecific lox sites used for the recombinase-mediated cassette exchange was found to be critical for the success of the strategy. The frequently used mutant site lox511, which differs from the natural loxP site by a single point mutation, proved unsuitable for this approach. A mutant lox site carrying two point mutations, however, was highly effective and 90% of the selected cell clones carried the desired modification. This biphasic recombination strategy allows for the efficient and precise modification of gene loci without the concomitant introduction of a selectable marker gene.  相似文献   

10.
Gene targeting by double homologous recombination in murine embryonic stem (ES) cells is a powerful tool used to study the cellular consequences of specific genetic mutations. A typical targeting construct consists of a neomycin phosphotransferase (neo) gene flanked by genomic DNA fragments that are homologous to sequences in the target chromosomal locus. Homologous DNA fragments are typically cloned from a murine genomic DNA library. Here we describe an alternative approach whereby the inducible nitric oxide synthase (NOS2) gene locus is partially mapped and homologous DNA sequences obtained using a long-range PCR method. A 7 kb NOS2 amplicon is used to construct a targeting vector where theneo gene is flanked by PCR-derived homologous DNA sequences. The vector also includes a thymidine kinase (tk) negative-selectable marker gene. Following transfection into ES cells, the PCR-based targeting vector undergoes efficient homologous recombination into the NOS2 locus. Thus, PCR-based gene targeting can be a valuable alternative to the conventional cloning approach. It expedites the acquisition of homologous genomic DNA sequences and simplifies the construction of targeting plasmids by making use of defined cloning sites. This approach should result in substantial time and cost savings for appropriate homologous recombination projects.  相似文献   

11.
beta-Thalassemias are a heterogeneous group of autosomal recessive disorders, characterized by reduced or absence of the beta-globin chain production by the affected alleles. Transplantation of genetically corrected autologous hematopoietic stem cell (HSC) is an attractive approach for treatment of these disorders. Gene targeting (homologous recombination) has many desirable features for gene therapy due to its ability to target the mutant genes and restore their normal expression. In the present study, a specific gene construct for beta-globin gene replacement was constructed consisting of: two homologous stems including, upstream and downstream regions of beta-globin gene, beta-globin gene lying between hygromycin and neomycin resistant genes as positive selection markers and thymidine kinase expression cassettes at both termini as negative selection marker. All segments were subcloned into pBGGT vector. The final plasmid was checked by sequencing and named as pFBGGT. Mammalian cell line COS-7 was transfected with linear plasmid by lipofection followed by positive and negative selection. DNA of the selected cells was analyzed by PCR and sequencing to confirm the occurrence of homologous recombination. In this novel strategy gene replacement was achieved in one step and by a single construct.  相似文献   

12.
Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, is gaining attention as a vector for potential use in human gene therapy. We and others have described AAV-mediated beta-globin gene transfer and expression in established human and murine erythroleukemia cell lines in vitro. However, successful AAV-mediated globin gene transduction of hematopoietic stem cells and long-term expression in vivo in progeny cells have not been documented. We report here that infection of murine hematopoietic bone marrow cells ex vivo with a recombinant AAV vector containing the genomic copy of a normal human globin gene followed by transplantation of these cells into lethally irradiated congenic mice resulted in efficient gene transfer into hematopoietic cells with long-term repopulating ability as detected by the presence of the human globin gene sequences in bone marrow and spleen in primary recipient mice for at least 6 months. Long-term expression of the human globin gene was also detected in bone marrow, but not in spleen, in primary recipient mice. Furthermore, in secondary-transplant experiments, we were also able to document the presence as well as expression of the transduced human globin gene in mouse bone marrow for up to 3 months. These results provide further support for potential use of the AAV-based vector system in gene therapy of human hemoglobinopathies in general and sickle-cell anemia and beta-thalassemia in particular.  相似文献   

13.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

14.
15.
Hematopoietic stem cell gene therapy is potentially curative for a number of inherited and acquired disorders. However, poor gene transfer and expression in repopulating hematopoietic stem cells attenuate this potential. Here we review potential means of conferring a selective advantage to hematopoietic stem cells and their progeny, and discuss the issues that surround the use of selective advantages in vivo.  相似文献   

16.
The ability to selectively target mammalian genes and disrupt or restore their function would represent an important advance in gene therapy. Mutation of a single nucleotide can often result in a non-functional gene product. Reversion of defective genes to their correct sequences could lead to permanent cures for patients with many genetic diseases. Molecules such as triplex forming oligonucleotides (TFOs) and peptide nucleic acids (PNAs) are currently being employed to bind to double-stranded DNA. Efficient targeting of genomic DNA with these molecules will be the initial step in gene modification.  相似文献   

17.
BACKGROUND: Gene targeting is a potential tool for gene therapy but is limited by the low rate of homologous recombination. Using highly homologous linear DNA improves gene targeting frequency but requires microinjection into nuclear cells to be effective. Because transfection of circular DNA is more efficient than transfection of linear DNA and adaptable to viral vectors, we developed a system for the intracellular release of linear fragments from circular plasmids. METHODS: Only one cutting site inside the "donor" DNA was not convenient because it led to integration of exogenous sequences into the target. So we constructed several "donor" plasmids containing the homologous sequences flanked by two I-Sce I recognition sites. Expression of I-Sce I allowed intracellular delivery of "ends-out" (replacement) vectors. We compared the efficiency of different constructions to correct a mutated gfp target. RESULTS: Co-transfection of "donor" plasmids and an I-Sce I expression vector into CHO cells enhanced the correction of an extrachromosomal mutated gfp target by at least 10 times. Maximum correction was observed with the greatest homology size and maximum effect of I-Sce I was obtained when the long hemi-sites of the duplicated I-Sce I sites were contiguous to the homologous sequence. Unexpectedly, the reverse orientation of I-Sce I sites provided little or no effect, probably due to the asymmetrical activity of the I-Sce I meganuclease. CONCLUSIONS: Releasing homologous DNA fragments with I-Sce I enhances gene replacement. This work provides the basis for the future design of viral vectors for gene replacement.  相似文献   

18.
Of the various gene therapy approaches under investigation for the treatment of genetic diseases, hematopoietic stem cell-mediated gene therapy has attracted the most interest. Enriched populations of hematopoietic stem cells can be obtained from diseased individuals, genetically modified to express normal gene products, and then transplanted back into these individuals without the risk of graft versus host disease. Following transplantation and engraftment, hematopoietically-derived cells can repopulate various sites of pathology and express the normal gene product in vivo. Such a procedure has been accomplished in several mouse models of human genetics diseases, leading to partial or complete correction of the disease phenotype, and current efforts are now focused on adapting the success of murine systems to larger animals, including man. This review will focus on the use of hematopoietic stem cell-mediated gene therapy for the treatment of lysosomal storage disorders, and discuss recent data obtained in the laboratory using a murine knock-out mouse model of Types A and B Niemann-Pick disease (NPD).  相似文献   

19.
20.
Recombinant DNA technology has permitted tremendous progression in delivering genes into cells; however, further advances in gene replacement techniques are needed prior to application to hematological diseases. One of the greatest obstacles to gene therapy in human hematopoietic stem cells is the lack of a defined protocol in humans and low transduction efficiency. Currently, murine leukemia virus (MuLV) is the most popular choice as a gene transfer vehicle but it cannot infect non-dividing cells. In our study, vesicular stomatitis G protein pseudotyped MuLV and HIV-1 were produced by a split gene transfection method. Mononuclear cells were separated from healthy human bone marrow and pre-stimulated with cytokines to form myeloid cell lineages. The cells were infected at different MOls with highly concentrated virus and infection rates were analyzed by flow cytometry and progenitor cell assays. eGFP expression was much higher when using HIV-1 system than when using MuLV. Progenitor cell assays agreed with the results obtained by FACS, but the difference was less great. We conclude that the lentiviral system is more suitable for gene transfer to hematopoietic progenitor cells probably because it stably infects both dividing and non-dividing cells. In addition, fibronectin was shown to improve the rate of infection with HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号