首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broad genome‐wide testing is increasingly finding its way to the public through the online direct‐to‐consumer marketing of so‐called personal genome tests. Personal genome tests estimate genetic susceptibilities to multiple diseases and other phenotypic traits simultaneously. Providers commonly make use of Terms of Service agreements rather than informed consent procedures. However, to protect consumers from the potential physical, psychological and social harms associated with personal genome testing and to promote autonomous decision‐making with regard to the testing offer, we argue that current practices of information provision are insufficient and that there is a place – and a need – for informed consent in personal genome testing, also when it is offered commercially. The increasing quantity, complexity and diversity of most testing offers, however, pose challenges for information provision and informed consent. Both specific and generic models for informed consent fail to meet its moral aims when applied to personal genome testing. Consumers should be enabled to know the limitations, risks and implications of personal genome testing and should be given control over the genetic information they do or do not wish to obtain. We present the outline of a new model for informed consent which can meet both the norm of providing sufficient information and the norm of providing understandable information. The model can be used for personal genome testing, but will also be applicable to other, future forms of broad genetic testing or screening in commercial and clinical settings.  相似文献   

2.
Expectations are high that increasing knowledge of the genetic basis of cardiovascular disease will eventually lead to personalised medicine—to preventive and therapeutic interventions that are targeted to at-risk individuals on the basis of their genetic profiles. Most cardiovascular diseases are caused by a complex interplay of many genetic variants interacting with many non-genetic risk factors such as diet, exercise, smoking and alcohol consumption. Since several years, genetic susceptibility testing for cardiovascular diseases is being offered via the internet directly to consumers. We discuss five reasons why these tests are not useful, namely: (1) the predictive ability is still limited; (2) the risk models used by the companies are based on assumptions that have not been verified; (3) the predicted risks keep changing when new variants are discovered and added to the test; (4) the tests do not consider non-genetic factors in the prediction of cardiovascular disease risk; and (5) the test results will not change recommendations of preventive interventions. Predictive genetic testing for multifactorial forms of cardiovascular disease clearly lacks benefits for the public. Prevention of disease should therefore remain focused on family history and on non-genetic risk factors as diet and physical activity that can have the strongest impact on disease risk, regardless of genetic susceptibility.  相似文献   

3.
Advances in genetic medicine may have implications for how we should think about personal responsibility for health, because they may show how it is possible to exert some control over risk factors that were previously thought as beyond the individual's control. Although we cannot control the genes that we are born with, we can often make decisions concerning genetic testing, disease prevention, and treatment. One might argue, therefore, that individuals should be treated as morally responsible for taking effective action in response to genetic risks factors, since genetically based health risks are similar to other health risks. While this argument makes sense as an abstract, philosophical position, it is not a useful guide to public policy. Given these concerns, there is little society can or should do to encourage individuals to address their genetic risk factors, other than praising those who make prudent choices.  相似文献   

4.
Genetic testing is expected to play a critical role in patient care in the near future. Advances in genomic research have the potential to impact medicine in very tangible and direct ways, from carrier screening to disease diagnosis and prognosis to targeted treatments and personalized medicine. However, numerous barriers to widespread adoption of genetic testing continue to exist, and health information technology will be a critical means of addressing these challenges. Electronic health records (EHRs) are a digital replacement for the traditional paper-based patient chart designed to improve the quality of patient care. EHRs have become increasingly essential to managing the wealth of existing clinical information that now includes genetic information extracted from the patient genome. The EHR is capable of changing health care in the future by transforming the way physicians use genomic information in the practice of medicine.  相似文献   

5.
6.
This study examines the way direct-to-consumer genetic testing (DTCGT) companies communicate privacy information and how consumers understand privacy implications of DTCGT. We first conducted an analysis of DTCGT websites to determine what information they provide regarding the treatment of consumer information and samples. 86 companies offered DTCGT services that could be purchased online from Canada. We then surveyed 415 consumers (180 had purchased, 235 considered but did not purchase DTCGT). While most websites had some privacy information, few provided sufficient information for consumers to make informed purchase decisions. Nearly half of participants reported reading the company’s privacy policy and many felt they received enough information about privacy implications, but their expectations were generally not consistent with company practices. The most common expectation was that the company would share results only with them and destroy their sample after testing. We discuss these issues regarding privacy expectations in the context of DTCGT.  相似文献   

7.
M M Burgess  C M Laberge  B M Knoppers 《CMAJ》1998,158(10):1309-1313
Information about a patient''s inherited risk of disease has important ethical and legal implications in clinical practice. Because genetic information is by nature highly personal yet familial, issues of confidentiality arise. Counselling and informed consent before testing are important in view of the social and psychological risks that accompany testing, the complexity of information surrounding testing, and the fact that effective interventions are often not available. Follow-up counselling is also important to help patients integrate test results into their lives and the lives of their relatives. Genetic counselling should be provided by practitioners who have up-to-date knowledge of the genetics of and the tests available for specific diseases, are aware of the social and psychological risks associated with testing, and are able to provide appropriate clinical follow-up. Some physicians may elect to refer patients for genetic counselling and testing. However, it is inevitable that all physicians will be involved in long-term follow-up both by monitoring for disease and by supporting the integration of genetic information into patients'' lives.  相似文献   

8.
Many social scientists and commentators have expressed concerns about the acceleration of genetic medicine and testing in the last few decades. While there is a growing body of work on how patients and the lay public view the potential of genetic medicine, there remains relatively little social science research on the personal and professional views of master's-trained genetic counselors, a growing profession of clinicians who are often the key medical actors translating increasingly complex genetic information to patients. This study begins to fill in this lacuna by examining the perspectives of 26 genetic counselors in the USA on some of the central bioethical concerns raised by genetic testing, with a particular focus on prenatal testing. The study finds that while there is general enthusiasm for genetic medicine, and prenatal testing in particular, genetic counselors also have reflexive ambivalence, expressing both skepticism and concern about the usefulness and consequences of acquiring genetic information.  相似文献   

9.
Established guidance for the protection of human subjects in research has provided the framework for research and clinical practice in genetics. Three key principles to emerge are the requirements for consent, privacy and confidentiality. However, recent research on genetic susceptibility to common diseases indicates that it may be more difficult to decide if and when genetic testing will be appropriate. Risks of disease may be low and interventions may not be available. Today, debate is primarily focussed on ethical issues raised by the use and storage of genetic information. One of the earliest experiences of genetic testing for some people is likely to be in the area of pharmacogenetics. Debate about ethical issues has been focused on the implications of patient stratification, particularly with regard to the availability of medicines for small groups and the significance of racial variation in response to medicines. The possible use of personal genetic information by insurance companies and employers has also been an issue that legislators have taken seriously.  相似文献   

10.
Despite a growing personal genomics market, little is known about how people engage with the possibilities offered by direct-to-consumer (DTC) genetic testing. In order to help address this gap, this study deploys narrative analysis of YouTube videos posted by individuals who have purchased DTC genetic testing for disease. Genetic testing is said to be contributing to new states of illness, where individuals may become “patients-in-waiting.” In the videos analyzed, we found a new form of storytelling about this ambiguous state of illness, which we refer to as autobiology. Autobiology – the study of, and story about, one's own biology – concerns narratives of sense-making through forms of biological practice, as well as wayfaring narratives which interweave genetic markers and family histories of disease. These autobiologies – part of a broader shift toward public stories about genetics and other healthcare technologies – exhibit playfulness, as well as being bound with consumerist practices.  相似文献   

11.
Health-related direct-to-consumer (DTC) genetic testing has been a controversial practice. Especially problematic is predictive testing for Alzheimer disease (AD), since the disease is incurable, prevention is inconclusive, and testing does not definitively predict an individual's future disease status. In this paper, I examine two contrasting cases of subjects who learn through genetic testing that they have an elevated risk of developing AD later in life. In these cases, the subject's emotional response to the result is related to how well prepared she was for the real-life personal implications of possible test results. Analysis leads to the conclusion that when groups of health-related genetic tests are offered as packages by DTC companies, informed consumer choice is rendered impossible. Moreover, I argue, this marketing approach contravenes US Federal Trade Commission policies for non-deceptive commercial communications. I conclude by suggesting ways to improve the prospects for informed consumer choice in DTC testing.  相似文献   

12.
High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.  相似文献   

13.
Health-related direct-to-consumer (DTC) genetic testing has been a controversial practice. Especially problematic is predictive testing for Alzheimer disease (AD), since the disease is incurable, prevention is inconclusive, and testing does not definitively predict an individual's future disease status. In this paper, I examine two contrasting cases of subjects who learn through genetic testing that they have an elevated risk of developing AD later in life. In these cases, the subject's emotional response to the result is related to how well prepared she was for the real-life personal implications of possible test results. Analysis leads to the conclusion that when groups of health-related genetic tests are offered as packages by DTC companies, informed consumer choice is rendered impossible. Moreover, I argue, this marketing approach contravenes U.S. Federal Trade Commission policies for non-deceptive commercial communications. I conclude by suggesting ways to improve the prospects for informed consumer choice in DTC testing.  相似文献   

14.
15.
“Genomic medicine” refers to the diagnosis, optimized management, and treatment of disease—as well as screening, counseling, and disease gene identification—in the context of information provided by an individual patient’s personal genome. Genomic medicine, to some extent synonymous with “personalized medicine,” has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds.  相似文献   

16.
The need for anonymous genetic counseling and testing.   总被引:3,自引:3,他引:0       下载免费PDF全文
Concerns are mounting about the risks of genetic discrimination resulting from the release of predictive and presymptomatic genetic test results to employers, insurers, and others. The ability to keep this information confidential is questionable, particularly in view of the expansion of electronic medical databases. One solution is to afford individuals access to anonymous genetic counseling and testing. Probands would be identified only by a code that would not reveal personal information, and test results would be stored, retrieved, and released solely on the basis of this code. The experience with anonymous HIV testing, while not completely analogous, suggests that such an approach would be both practical and effective.  相似文献   

17.
Direct-to-consumer personalized genomic medicine has recently grown into a small industry that sells mail-order DNA sample kits and then provides disease risk assessments, typically based upon results from genome-trait association studies. The companies selling these services have been largely exempted from FDA regulation in the United States. Testing kit companies and their supporters have defended the industry's unregulated status using two arguments. First, defenders have argued that mere absence of harm is all that must be proved for mail-order tests to be acceptable. Second, defenders of mail-order testing have argued that there is an individual right to the tests' information. This article rebuts these arguments. The article demonstrates that the direct-to-consumer market has resulted in the sidelining of clinical utility (medical value to patients), leading to the development of certain mail-order tests that do not promote customers' interests and to defenders' downplaying of a potentially damaging empirical study of mail-order genomic testing's effects on consumers. The article also shows that the notion of an individual right to these tests rests on a flawed reading of the key service provided by mail-order companies, which is the provision of medical interpretations, not simply genetic information. Absent these two justifications, there is no reason to exempt direct-to-consumer personalized genomic medicine from stringent federal oversight.  相似文献   

18.
Commercialization of genetic technologies is expanding the horizons for the marketing and sales of genetic tests direct-to-consumers (DTCs). This study assesses the information provision and access requirements that are in place for genetic tests that are being advertised DTC over the Internet. Sets of key words specific to DTC genetic testing were entered into popular Internet search engines to generate a list of 24 companies engaging in DTC advertising. Company requirements for physician mediation, genetic counseling arrangements, and information provision were coded to develop categories for quantitative analysis within each variable. Results showed that companies offering risk assessment and diagnostic testing were most likely to require that testing be mediated by a clinician, and to recommend physician-arranged counseling. Companies offering enhancement testing were less likely to require physician mediation of services and more likely to provide long-distance genetic counseling. DTC advertisements often provided information on disease etiology; this was most common in the case of multifactorial diseases. The majority of companies cited outside sources to support the validity of claims about clinical utility of the tests being advertised; companies offering risk assessment tests most frequently cited all information sources. DTC advertising for genetic tests that lack independent professional oversight raises troubling questions about appropriate use and interpretation of these tests by consumers and carries implications for the standards of patient care. These implications are discussed in the context of a public healthcare system.  相似文献   

19.
Scanning the genome for association between markers and complex diseases typically requires testing hundreds of thousands of genetic polymorphisms. Testing such a large number of hypotheses exacerbates the trade-off between power to detect meaningful associations and the chance of making false discoveries. Even before the full genome is scanned, investigators often favor certain regions on the basis of the results of prior investigations, such as previous linkage scans. The remaining regions of the genome are investigated simultaneously because genotyping is relatively inexpensive compared with the cost of recruiting participants for a genetic study and because prior evidence is rarely sufficient to rule out these regions as harboring genes with variation of conferring liability (liability genes). However, the multiple testing inherent in broad genomic searches diminishes power to detect association, even for genes falling in regions of the genome favored a priori. Multiple testing problems of this nature are well suited for application of the false-discovery rate (FDR) principle, which can improve power. To enhance power further, a new FDR approach is proposed that involves weighting the hypotheses on the basis of prior data. We present a method for using linkage data to weight the association P values. Our investigations reveal that if the linkage study is informative, the procedure improves power considerably. Remarkably, the loss in power is small, even when the linkage study is uninformative. For a class of genetic models, we calculate the sample size required to obtain useful prior information from a linkage study. This inquiry reveals that, among genetic models that are seemingly equal in genetic information, some are much more promising than others for this mode of analysis.  相似文献   

20.
Ramani D  Saviane C 《EMBO reports》2010,11(12):910-913
Commercial genetic testing challenges traditional medical practice and the doctor–patient relationship. Neurodegenerative diseases may serve as the practical and ethical testing ground for the application of genomics to medicine.In the age of the Internet, a wealth of information lies at your fingertips—even your genetic ancestry and your fate in terms of health and sickness. A Google search for ‘genetic testing'' immediately comes up with a list of companies offering quick, direct-to-consumer genetic tests (DCGT) for relatively little money. “Claim your kit, spit into the tube and send it to the lab,” states the website of 23andMe—the company whose Personal Genome Service was named the ‘2008 Invention of the Year'' by Time magazine. Six to eight weeks after sending in a sample, customers can log on to the company website and learn about their genetic origins and ancestry if they opted for the ‘Fill in Your Family Tree'' option, or can explore their genetic profile under the “Health Edition” and what it says about personal disease risks and drug responses.The availability of next-generation high-throughput DNA sequencers has enabled companies to sequence the genes of a large number of customers at a low costs and with few personnel23andMe is one of several companies that offer predictive genetic tests covering a range of multifactorial and monogenic disorders (STOA, 2008). This is clearly a revolutionary approach to personalized medicine; it not only allows individuals to learn about genetic risk factors for a variety of diseases, but also does so outside the established medical system. Before the advent of DCGTs, genetic tests were only carried out at specialized medical institutions under controlled conditions, and only on referral from a physician. The decreasing price of DNA sequencing, new technologies for high-throughput sequencing and the growth of the Internet have all helped to reduce the technical, financial and access barriers to genetic testing. It is therefore not surprising that private enterprises moved into this fast-developing market.The availability of next-generation high-throughput DNA sequencers enables companies to sequence the genes of a large number of customers at a low cost and with few personnel. They can therefore offer this service at attractive prices, in the range of a few hundred dollars. The Internet conversely enables accessibility: a few mouse clicks are enough, while completely bypassing the usual checks and balances of organized healthcare. This means that expert advice is often lacking for patients about results that predict inherited risks for diabetes, cancer, neurological disorders and drug response (STOA, 2008).The simple, affordable and rapid service offered by these companies raises concerns about the clinical validity and utility of the tests, as well as the information and support that they offer to properly interpret the results. In June this year, the US Food and Drug Administration (FDA) contacted five companies that sell genetic tests directly to consumers and asked them to prove the validity of their products (Pollack, 2010). The FDA argues that genetic tests are diagnostic tools that must obtain regulatory approval before they can be marketed, but it did not order the companies to stop selling their tests. 23andMe—one of the five companies that were contacted—replied: “We are sensitive to the FDA''s concerns, but we believe that people have the right to know as much about their genes and their bodies as they choose” (Pollack, 2010). Last year, researchers from the J. Craig Venter Institute (San Diego, CA, USA) and the Scripps Translational Science Institute (La Jolla, CA, USA) reported inconsistencies between results obtained from two DCGT companies in an opinion article in Nature and made recommendations for improving predictions (Ng et al, 2009).A balance must be struck between consumer choice, consumer benefit and consumer protection. On one side is the individual''s right to have access to information about his or her health condition and health risks, so as to be able to take preventive measures. On the other side, serious questions have emerged about the lack of proper counselling in a professional setting. Are customers able to correctly understand, interpret and manage the information gained from a genetic test? Are they prepared to deal with the health risk information such a test provides? Are the scientific community and society as a whole ready to change the focus in medicine from morphological and physiological factors to molecular and genetic information?A balance must be struck between consumer choice, benefit and protectionThese concerns become more complicated when companies offer genetic tests for neurodegenerative disorders for which there are no preventive measures or treatments, such as Alzheimer, Parkinson or Huntington diseases. Most of these diseases are severe, debilitating and can lead to stigmatization and possible discrimination for patients. Brain disorders that cause progressive mental decline affect not only the health of the individual, but also their identity, self-consciousness and role within the family and society. As Judit Sándor, Director of the Centre for Ethics and Law in Biomedicine at the Central European University (Budapest, Hungary) put it: “The stigmatization of hereditary diseases in society may lead to ethical and legal consequences that are difficult to grasp. The stigma associated with neurodegenerative diseases would be even harder to bear if the disease is proven to be hereditary by some form of genetic testing.”In this context, 60 experts from a range of disciplines—scientists, clinicians, philosophers, sociologists, jurists, journalists and patients—from Europe, Canada and the USA met at the 2010 workshop ‘Brains In Dialogue On Genetic Testing'' in Trieste, Italy. The meeting was organized by the International School for Advanced Studies, as part of the European project ‘Brains in Dialogue'', which aims to foster dialogue among key stakeholders in neuroscience (www.neuromedia.eu). The use of predictive genetic testing for neurodegenerative diseases was the main focus of the meeting and represents an interesting model for discussing the risks and benefits of DCGTs.Very few neurodegenerative disorders have a typical Mendelian inheritance. The most (in)famous is Huntington disease, which typically becomes noticeable in middle age. Symptoms include progressive choreiform movements, cognitive impairment, mood disorders and behavioural changes. Huntington disease is caused by an increase in the number of CAG repeats in the gene Huntingtin, which can be tested for easily and reliably (Myers, 2004) in order to confirm a diagnosis or predict the disease, in at-risk groups or prenatally. The results have psychological and ethical implications that affect individuals and their families. According to the STOA report on DCGTs, only one company offers a test for Huntington disease.Most neurodegenerative disorders have a more complex set of genetic and environmental risk factors that make it difficult—if not impossible—to predict the risk of disease at a certain age. A small percentage of cases of Alzheimer and Parkinson diseases—usually early-onset—carry specific mutations with a Mendelian inheritance, but genetic factors are also involved in the most common late-onset forms of these diseases (Avramopoulos, 2009; Klein & Schlossmacher, 2006). Nicholas Wood of University College London, UK, commented that: “[t]here has been a revolution in our molecular genetic understanding of Parkinson''s disease. Twenty years ago Parkinson''s disease perhaps was considered the archetype of non-genetic disease. It is now clear that a growing list of genes is primarily responsible for Mendelian forms of Parkinson''s disease. It is also clear from recent studies that, due to reduced penetrance, some of these ‘Mendelian genes'' play a role in the so-called sporadic disease.” Nevertheless, a genetic test based on susceptibility genes would not enable a clear diagnosis—as in the case of Huntington disease—but only an estimate of the individual''s risk of developing the disease later in life, with varying reliability.For Alzheimer disease, genetic testing is usually only recommended for individuals with a family history of early-onset or with immediate relatives who already have the disease. The most common form of late-onset Alzheimer disease has a complex inheritance pattern. The medical establishment does not therefore recommend genetic testing for it, although a polymorphism in the Apolipoprotein E (APOE) gene has been unequivocally associated with Alzheimer disease (Avramopoulos, 2009). The identification of such risk factors through epidemiological studies provides valuable information about the molecular basis of the disease, but the management of this information at the individual level seems difficult for clinicians and patients. Agnes Allansdottir of the University of Siena, Italy, explained these difficulties stating that “research on decision-making processes demonstrates that we humans have severe problems dealing with probabilities.”Sándor expressed concerns that these difficulties could lead to additional discrimination. “Most people know what to do if they have high blood pressure, for instance. However, information coming from a genetic test is much more complex—their reading and interpretation require special expertise,” she said. She pointed out that some groups might be unable to access that expertise, while others might be unable to understand the information. “As a consequence, they will suffer an additional form of discrimination that is the ‘discrimination in the accessibility'' of sensitive and complex medical data, and that affects […] the right to privacy, as well.”…“research on decision-making processes demonstrates that we humans have severe problems dealing with probabilities”It is certainly possible that individuals who do not understand what probabilistic estimates of risk mean will be upset to find out they have a higher risk of developing a certain disorder, even though in absolute terms this risk is marginal. Avoiding this situation is what genetic counselling tries to achieve: to inform patients and help them to interpret the results of genetic tests. For the same reason, genetic testing for most common forms of late-onset Alzheimer or Parkinson disease—both of which are multifactorial—is not recommended, precisely because of the limited predictive value of these tests and the lack of proven preventive measures. However, various companies including deCODEme offer to identify your APOE variant and calculate “your risk of developing late-onset Alzheimer''s Disease” as part of their service.Research has demonstrated that genetic testing may be a useful coping strategy for some at-risk individuals (Gooding et al, 2006), a conclusion that was also reached by the Risk Evaluation and Education for Alzheimer''s Disease (REVEAL) study (Green et al, 2009). Some results showed that knowledge of their APOE genotype and numerical lifetime risk influenced the health-related behaviour of asymptomatic adult children of Alzheimer disease patients. The discovery of increased risk of disease through an education-and-disclosure protocol was associated with a stronger motivation to engage in behaviours that reduce risk, such as changes in medications or vitamin intake, even if their effectiveness is still unclear (Chao et al, 2008). Genotype disclosure did not result in short-term psychological problems, despite the frightening nature of the disease and the lack of therapies for it (Green et al, 2009). These studies highlight the importance of education and counselling in understanding risk and evaluating the means of counteracting it.Yet the ease with which DCGT companies offer tests over the Internet creates a new kind of autonomy for patients. “Genetic information serves often as a key to future decisions. Based on the information, they may rearrange the priorities in their life or change their lifestyle in order to fight against the manifestation of the disease, to decrease its symptoms or simply delay its progress,” Sándor said. “For many people, nothing else is worse than the lack of certainty and thus knowledge, in itself, can be a value.”To know or not to know: that is the question—particularly for neurodegenerative diseases. In addition to the opinions of the experts at the meeting, the public round table, ‘Health and DNA: my life, my genes'', showed that the choice whether to take a test should be a personal decision; certainly nobody should be forced in one direction or another. During the discussion, different opinions and experiences regarding the use of genetic testing were presented by members of the panel and the public. Verena Schmocker, a Swiss woman affected by Parkinson disease, explained why she refused to be tested, despite a strong family history of early-onset Parkinson disease. “I knew already that the disease was in my family, but I didn''t want to take any genetic test. I chose to live my life day by day and live what is there for me to live.” Another woman in the audience explained that she wanted to know her destiny: “[w]hen 15 years ago I was diagnosed with Huntington''s disease I woke up from a nightmare of doubts. I started organizing my life, I got married and got prepared for the future.”In many ways, Huntington disease is an unrepresentative example—not only because it is an untreatable, debilitating Mendelian disease, but also because patients typically receive mandatory and sophisticated patient counselling. Most importantly, as Marina Frontali from the National Research Council (Rome, Italy) highlighted, counselling should enable and respect autonomous decisions by the person at risk, even in light of third-party pressure to take the test, not just by employers or insurance companies, but also by family members. The counselling service for Huntington disease—through a tight collaboration between laypeople and professionals—is a valuable example of the management of genetic testing.…the ease with which DCGT companies offer tests over the Internet creates a new kind of autonomy for patientsThe Eurobarometer 2005 survey showed that EU citizens are generally supportive of the use of genetic data for diagnosis and research, and 64% of the respondents said that they would take a genetic test to detect potential diseases (EC, 2006). In reality, however, attitudes vary between countries: in most cases, people would be willing to take a test only in exceptional circumstances or only if it was highly regulated and controlled. Interestingly, those countries in which people expressed more concern and negative attitudes towards testing were those with higher levels of education and scientific literacy, where the mass media is more attentive to science and technology and where the public and political debate is more advanced. It shows, again, that increasing scientific literacy is not enough to overcome people''s fears and objections to genetic testing; the more they understand the issues, the less likely people are to be enthusiastic about new technologies.These concerns notwithstanding, the number of tests that are available is growing, and genetic testing—whether as part of the healthcare system or through DCGT companies—is becoming a model for preventive medicine and discussions about the impact of genetics on public health (Brand et al, 2008). The advances brought about by genomics will lead to more targeted health promotion messages and disease prevention programmes specifically directed at susceptible individuals and families, or at subgroups of the population, based on their genomic risk profile.The controversial nature of the political discourse concerning science and health often raises controversy, and the integration of genomics into public healthcare, research and policy might therefore be challenging. According to Brand et al (2008), the question is not whether the use of genomics in public health is dangerous, but whether excluding genomic information from public health interventions and withholding the potential of evidence-based prevention might do more harm. The next decade will provide a window of opportunity in which to prepare and educate clinicians, public health professionals, policy-makers and the public for the integration of genomics into healthcare. Brand et al (2008) argue that there is an ethical obligation to meet this challenge and make the best use of the opportunities provided by scientific progress.This, inevitably, requires a legal and regulatory framework to ensure that the benefits are made widely available to the population and, in particular, to protect consumers—today, DCGT by private companies remains a largely unregulated market. In 2008, the Committee of Ministers of the 47 Member States of the Council of Europe adopted the first international legally binding document concerning genetic testing for health purposes (Lwoff, 2009). The Additional Protocol to The Convention on Human Rights and Biomedicine about Genetic Testing for Health Purposes addresses some of the issues raised by genetic testing, from quality and clinical utility, to public information and genetic screening programmes for health purposes (Council of Europe, 2008). According to the Protocol, a health-screening programme that uses genetic tests can only be implemented if approved by the competent body, after independent evaluation of its ethical acceptability and fulfilment of specific conditions. These include the health relevance, scientific validity and effectiveness, availability of appropriate preventive or treatment measures, equitable access to the programme and availability of adequate measures to inform the population about the existence, purpose and accessibility of the screening programme, as well as the voluntary nature of participation in it.Two particular issues were discussed during the development of the Protocol: direct access to tests by individuals; and information and genetic counselling (Lwoff, 2009). The Protocol includes some debated restrictions to DCGT (Borry, 2008), to guarantee the proper interpretation of predictive test results and appropriate counselling to understand their implications. According to Article 7, with few exceptions “[a] genetic test for health purposes may only be performed under individualized medical supervision.” In order to assure quality of information and support for the patient, Article 8 states that “the person concerned shall be provided with prior appropriate information in particular on the purpose and the nature of the test, as well as the implications of its results.” Moreover, for tests for monogenic diseases, tests that aim to detect a genetic predisposition or genetic susceptibility to a disease, or tests to identify the subject as a healthy carrier of a gene responsible for a disease, appropriate genetic counselling should be available. It states that “the form and extent of this genetic counselling shall be defined according to the implications of the results of the test and their significance for the person or the members of his or her family, including possible implications concerning procreation choices.” According to this document, genetic counselling could thus go from being a “very heavy and long” procedure to a “lighter” one, but should be guaranteed in any case. The Protocol has already influenced legislation, but it will apply only in countries that have ratified it, which, so far, is only Slovenia.Companies that offer DCGTs are harbingers of change for personalized medicine. Their increasing popularity—owing not least to the ease with which their services can be obtained over the Internet—shows that the public is willing to pay for this kind of personal information. Nevertheless, healthcare systems and regulators must ensure that developments in this area benefit patients. Experience from genetic testing for neurological diseases—given their particularly severe impact on patients and their families—highlights both the current lack of proper regulation and oversight, as well as the potential health benefits that can be reaped from genetic tests.? Open in a separate windowDonato RamaniOpen in a separate windowChiara Saviane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号