首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Esophageal squamous cell carcinoma is a very important cancer type, not only because of its frequent cases around the world but also because of its high mortality rate. Despite of the fact that this is a very rare cancer in Poland (around 2% of patients), we need to know more about this disease in order to find better ways to fight it. Epidemiological factors: smoking and use of psychoactive substances like alcohol and drugs, poor diet as well as changes in expression of genes may have influence on this cancer. During last years there has been a lot of researche on the role of GEAC1, which seems to play a very important role in normal and cancer cells. Perhaps the protein coded by this gene is an important part in cancer development, also being an important element in processes in normal tissues.  相似文献   

2.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

3.
4.
Adverse reactions (ARs) to drugs administered during general anesthesia may be very severe and life-threatening, with a mortality rate ranging from 3 to 9%. The adverse reactions to drugs may be IgE and non-IgE-mediated. Neuromuscular blocking agents (NMBA) represent the first cause of perioperative reactions during general anesthesia followed by latex, antibiotics, hypnotic agents, opioids, colloids, dyes and antiseptics (chlorhexidine). All these substances (i.e. NMBA, anesthetics, antibiotics, latex devices) may cause severe systemic non-IgE-mediated reactions or fatal anaphylactic events even in the absence of any evident risk factor in the patient’s anamnesis. For this reason, in order to minimize perioperative anaphylactic reactions, it is important to have rapid, specific, sensitive in vitro diagnostic tests able to confirm the clinical diagnosis of acute anaphylaxis.  相似文献   

5.
6.
7.
A significant potentiation of antiarrhythmic effect was observed in 121 dogs with arrhythmias 24 and 48 hours after the coronary artery ligation when the following drugs were combined: N-propylajmaline bromide (1A class) and trimecaine (1B class), quinidine (1A class) and trimecaine, N-propylajmaline bromide and anaprilin (2 class). The potentiation is attributed to the different molecular mechanisms of action of the drugs.  相似文献   

8.
9.
Interaction of cardiotonic drugs (strophantidine acetate, suphan, para-oxybenzoic acid) and ubiquinone with phospholipid bilayers has been studied. Exothermic effect of the reaction followed by an increase in microviscosity and hydrophobicity of the bilayer from cardiolipin, but by a decrease of the microviscosity of the bilayer from lecithin has been estimated. A correlation is observed between changes in the lecithin bilayer fluidity and the heat effect of the interaction at the initial period of time after mixing of reagents.  相似文献   

10.
11.
12.
Hydroxyurea and guanazole were used as selective agents in tissue culture to obtain independent Chinese hamster ovary cell lines resistant to the cytotoxic effects of hydroxyurea or guanazole. In all cases tested a cell line selected for resistance to one of the antitumor agents exhibited resistance to both drugs. This result supports the view that these two drugs act at a common site.  相似文献   

13.
Antifungal agents: mechanisms of action   总被引:16,自引:0,他引:16  
Clinical needs for novel antifungal agents have altered steadily with the rise and fall of AIDS-related mycoses, and the change in spectrum of fatal disseminated fungal infections that has accompanied changes in therapeutic immunosuppressive therapies. The search for new molecular targets for antifungals has generated considerable research using modern genomic approaches, so far without generating new agents for clinical use. Meanwhile, six new antifungal agents have just reached, or are approaching, the clinic. Three are new triazoles, with extremely broad antifungal spectra, and three are echinocandins, which inhibit synthesis of fungal cell wall polysaccharides--a new mode of action. In addition, the sordarins represent a novel class of agents that inhibit fungal protein synthesis. This review describes the targets and mechanisms of action of all classes of antifungal agents in clinical use or with clinical potential.  相似文献   

14.
15.
2-Alkoxy-2-propenylidene methanaminiums inhibited gluconeogenesis and stimulated glycolysis by hepatocytes isolated from 48-h-fasted rats and fasted-refed rats, respectively. The order of effectiveness of these compounds was the same as the hypoglycemic response of intact rats found in other studies, i.e., butoxy greater than propoxy greater than ethoxy derivative. Lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios were elevated whereas cellular ATP concentration was decreased by these compounds. The butoxy derivative inhibited the oxidation of [U-14C]glucose to 14CO2 but increased glucose utilization and lactate accumulation by isolated rat diaphragms. The butoxy derivative also inhibited site I reversed electron transfer and the oxidation of NAD+-linked substrates but not succinate by isolated rat liver mitochondria. Methanaminium-induced hypoglycemia in intact rats was accompanied by an increase in blood lactate concentration as well as blood beta-hydroxybutyrate to acetoacetate ratio. The hypoglycemia caused by these compounds is proposed to be due to inhibition of glucose synthesis in the liver along with increased glucose utilization in peripheral tissues, both for want of ATP as a consequence of inhibition of site I electron transfer.  相似文献   

16.
17.
18.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

19.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

20.
Potential mechanisms of action of antiviral agents   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号