首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819–4827). Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the ‘aa’ splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.  相似文献   

2.
Invasion of glial cells by the human polyomavirus, JC virus (JCV), leads to a rapidly progressing and uniformly fatal demyelinating disease known as progressive multifocal leukoencephalopathy. The endocytic trafficking steps used by JCV to invade cells and initiate infection are not known. We demonstrated that JCV infection was inhibited by dominant defective and constitutively active Rab5-GTPase mutants that acted at distinct steps in endosomal sorting. We also found that labeled JCV colocalized with labeled cholera toxin B and with caveolin-1 (cav-1) on early endosomes following internalization by clathrin-dependent endocytosis. JCV entry and infection were both inhibited by dominant defective mutants of eps15 and Rab5-GTPase. Expression of a dominant-negative scaffolding mutant of cav-1 did not inhibit entry or infection by JCV. A single-cell knockdown experiment using cav-1 shRNA did not inhibit JCV entry but interfered with a downstream trafficking event important for infection. These data show that JCV enters cells by clathrin-dependent endocytosis, is transported immediately to early endosomes, and is then sorted to a caveolin-1-positive endosomal compartment. This latter step is dependent on Rab5-GTPase, cholesterol, caveolin-1, and pH. This is the first example of a ligand that enters cells by clathrin-dependent endocytosis and is then sorted from early endosomes to caveosomes, indicating that caveolae-derived vesicles play a more important role than previously realized in sorting cargo from early endosomes.  相似文献   

3.
4.
Early steps of polyomavirus entry into cells   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which murine polyomavirus penetrates cells and arrives at the nucleus, the site of viral replication, is not well understood. Simian virus 40 and JC virus, two closely related members of the polyomavirus subfamily, use caveola- and clathrin-mediated uptake pathways for entry, respectively. The data presented here indicate that compounds that block endocytosis of both caveola- and clathrin-derived vesicles have no effect on polyomavirus infectivity. Polyomavirus does not appear to colocalize with either clathrin light chain or caveolin-1 by immunofluorescence microscopy. Additionally, expression of a dominant-negative form of dynamin I has no effect on polyomavirus uptake and infectivity. Therefore, polyomavirus uptake occurs through a class of uncoated vesicles in a clathrin-, caveolin-1-, and dynamin I-independent manner.  相似文献   

5.
Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.  相似文献   

6.
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to γ-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.  相似文献   

7.
Rotavirus is the most common cause of severe gastroenteritis in infants and children worldwide. The cell attachment of most animal rotaviruses, which belong to the neuraminidase-sensitive strains, requires sialic acid residues on the host cell membranes. On the other hand, most human rotaviruses are classified as neuraminidase-insensitive strains. The involvement of gangliosides on the host cell surface in human rotavirus infection was investigated by immunostaining analysis of target cells, and by assaying the neutralization of infection by rotavirus and the blocking of target cellular receptors. In host cells (MA104 cells) pretreated with Arthrobacter ureafaciens neuraminidase, which were still infected by human rotaviruses (KUN and MO strains), GM(3) was hydrolyzed markedly by the neuraminidase, while GM(1a) was not hydrolyzed at all. Infection by the rotaviruses was strongly inhibited by exogenous ganglioside GM(1a), but not GA(1). Infection was also inhibited by pretreatment of the MA104 cells with cholera toxin B-subunit, which specifically blocked ganglioside GM(1a) on the plasma membrane. The treatment of MA104 cells with the endoglycoceramidase attenuated human rotavirus infection. From these findings, we concluded that GM(1a) on the plasma membrane of the host cells was involved in the infection by human rotavirus KUN and MO strains.  相似文献   

8.
Several lines of evidence support a strong relationship between cholesterol and Alzheimer's disease pathogenesis. Membrane cholesterol is known to modulate amyloid precursor protein (APP) endocytosis and amyloid-β (Aβ) secretion. Here we show in a human cell line model of endocytosis (HEK293 cells) that cholesterol exerts these effects in a dose-dependent and linear manner, over a wide range of concentrations (-40% to + 40% variations of plasma membrane cholesterol induced by methyl-beta-cyclodextrin (MBCD) and MBCD-cholesterol complex respectively). We found that the gradual effect of cholesterol is inhibited by small interference RNA-mediated downregulation of clathrin. Modulation of clathrin-mediated APP endocytosis by cholesterol was further demonstrated using mutants of proteins involved in the formation of early endosomes (dynamin2, Eps15 and Rab5). Importantly we show that membrane proteins other than APP are not affected by cholesterol to the same extent. Indeed clathrin-dependent endocytosis of transferrin and cannabinoid1 receptors as well as internalization of surface proteins labelled with a biotin derivative (sulfo-NHS-SS-biotin) were not sensitive to variations of plasma membrane cholesterol from -40% to 40%. In conclusion clathrin-dependent APP endocytosis appears to be very sensitive to the levels of membrane cholesterol. These results suggest that cholesterol increase in AD could be responsible for the enhanced internalization of clathrin-, dynamin2-, Eps15- and Rab5-dependent endocytosis of APP and the ensuing overproduction of Aβ.  相似文献   

9.
Guo CJ  Wu YY  Yang LS  Yang XB  He J  Mi S  Jia KT  Weng SP  Yu XQ  He JG 《Journal of virology》2012,86(5):2621-2631
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. Megalocytiviruses have been implicated in more than 50 fish species infections and currently threaten the aquaculture industry, causing great economic losses in China, Japan, and Southeast Asia. However, the cellular entry mechanisms of megalocytiviruses remain largely uncharacterized. In this study, the main internalization mechanism of ISKNV was investigated by using mandarin fish fry (MFF-1) cells. The progression of ISKNV infection is slow, and infection is not inhibited when the cells are treated with ammonium chloride (NH(4)Cl), chloroquine, sucrose, and chlorpromazine, which are inhibitors of clathrin-dependent endocytosis. The depletion of cellular cholesterol by methyl-β-cyclodextrin results in the significant inhibition of ISKNV infection; however, the infection is resumed with cholesterol replenishment. Inhibitors of caveolin-1-involved signaling events, including phorbol 12-myristate 13-acetate (PMA), genistein, and wortmannin, impair ISKNV entry into MFF-1 cells. Moreover, ISKNV entry is dependent on dynamin and the microtubule cytoskeleton. Cofraction analysis of ISKNV and caveolin-1 showed that ISKNV colocates with caveolin-1 during virus infection. These results indicate that ISKNV entry into MFF-1 cells proceeds via classical caveola-mediated endocytosis and is dependent on the microtubules that serve as tracks along which motile cavicles may move via a caveola-caveosome-endoplasmic reticulum (ER) pathway. As a fish iridovirus, ISKNV entry into MFF-1 cells is different from the clathrin-mediated endocytosis of frog virus 3 entry into mammalian cells (BHK-21) at 28°C, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection.  相似文献   

10.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol.  相似文献   

12.
Very little is known about the mechanism of cell entry of avian reovirus (ARV). The aim of this study was to explore the mechanism of ARV entry and subsequent infection. Cholesterol mainly affected the early steps of the ARV life cycle, because the presence of cholesterol before and during viral adsorption greatly blocked ARV infectivity. Although we have demonstrated that ARV facilitating p38 MAPK is beneficial for virus replication, its mechanism remains unknown. Here, we show that ARV-induced phosphorylation of caveolin-1 (Tyr(14)), dynamin-2 expression, and Rac1 activation through activation of p38 MAPK and Src in the early stage of the virus life cycle is beneficial for virus entry and productive infection. The strong inhibition by dynasore, a specific inhibitor of dynamin-2, and depletion of endogenous caveolin-1 or dynamin-2 by siRNAs as well as the caveolin-1 colocalization study implicate caveolin-1-mediated and dynamin-2-dependent endocytosis as a significant avenue of ARV entry. By means of pharmacological inhibitors, dominant negative mutants, and siRNA of various cellular proteins and signaling molecules, phosphorylation of caveolin-1, dynamin-2 expression, and Rac1 activation were suppressed, suggesting that by orchestrating p38 MAPK, Src, and Rac1 signaling cascade in the target cells, ARV creates an appropriate intracellular environment facilitating virus entry and productive infection. Furthermore, disruption of microtubules, Rab5, or endosome acidification all inhibited ARV infection, suggesting that microtubules and small GTPase Rab5, which regulate transport to early endosome, are crucial for survival of ARV and that exposure of the virus to acidic pH is required for productive infection.  相似文献   

13.
Infection of epithelial cells by some animal rotaviruses, but not human or most animal rotaviruses, requires the presence of N-acetylneuraminic (sialic) acid (SA) on the cell surface for efficient infectivity. To further understand how rotaviruses enter susceptible cells, six different polarized epithelial cell lines, grown on permeable filter membrane supports containing 0.4-μm pores, were infected apically or basolaterally with SA-independent or SA-dependent rotaviruses. SA-independent rotaviruses applied apically or basolaterally were capable of efficiently infecting both sides of the epithelium of all six polarized cell lines tested, while SA-dependent rotaviruses only infected efficiently through the apical surface of five of the polarized cell lines tested. Regardless of the route of virus entry, SA-dependent and SA-independent rotaviruses were released almost exclusively from the apical domain of the plasma membrane of polarized cells before monolayer disruption or cell lysis. The transepithelial electrical resistance (TER) of cells decreased at the same time, irrespective of whether infection with SA-independent rotaviruses occurred apically or basolaterally. The TER of cells infected apically with SA-dependent rotaviruses decreased earlier than that of cells infected basolaterally. Rotavirus infection decreased TER before the appearance of cytopathic effect and cell death and resulted in an increase in the paracellular permeability to [3H]inulin as a function of loss of TER. The presence of SA residues on either the apical or basolateral side was determined using a Texas Red-conjugated lectin, wheat germ agglutinin (WGA), which binds SA residues. WGA bound exclusively to SA residues on the apical surface of the cells, confirming the requirement for SA residues on the apical cell membrane for efficient infectivity of SA-dependent rotaviruses. These results indicate that the rotavirus SA-independent cellular receptor is present on both sides of the epithelium, but SA-dependent and SA-independent rotavirus strains infect polarized epithelial cells by different mechanisms, which may be relevant for pathogenesis and selection of vaccine strains. Finally, rotavirus-induced alterations of the epithelial barrier and paracellular permeability suggest that common mechanisms of pathogenesis may exist between viral and bacterial pathogens of the intestinal tract.  相似文献   

14.
Human astroviruses (HAstV) are a frequent cause of gastroenteritis in young children and immunocompromised patients. To understand the early steps of HAstV infection in the highly permissive Caco-2 cell line, the binding and entry processes of the virus were characterized. The half-time of virus binding to the cell surface was about 10 min, while virus decapsidation took around 130 min. Drugs affecting clathrin-mediated endocytosis, endosome acidification, and actin filament polymerization, as well as those that reduce the presence of cholesterol in the cell membrane, decreased the infectivity of the virus. The infection was also reduced by silencing the expression of the clathrin heavy chain (CHC) by RNA interference or by overexpression of dominant-negative mutants of dynamin 2 and Eps15. Furthermore, the entry of HAstV apparently depends on the maturation of endosomes, since the infection was reduced by silencing the expression of Rab7, a small GTPase involved in the early- to late-endosome maturation. Altogether, our results suggest that HAstV enters Caco-2 cells using a clathrin-dependent pathway and reaches late endosomes to enter cells. Here, we have characterized the mechanism used by human astroviruses, important agents of gastroenteritis in children, to gain entry into their host cells. Using a combination of biochemical and genetic tools, we found that these viruses enter Caco-2 cells using a clathrin-dependent endocytic pathway, where they most likely need to travel to late endosomes to reach the cytoplasm and begin their replication cycle.  相似文献   

15.
Infectious bursal disease virus (IBDV) internalization is sparsely known in terms of molecular components of the pathway involved. To describe the cell biological features of IBDV endocytosis, we employed perturbants of endocytic pathways such as pharmacological inhibitors and overexpression of dominant‐negative mutants. Internalization analysis was performed quantifying infected cells by immunofluorescence and Western blot detection of the viral protein VP3 at 12 h post‐infection reinforced by the analysis of the capsid protein VP2 localization after virus uptake at 1 h post‐infection. We compared IBDV infection to the internalization of well‐established ligands with defined endocytic pathways: transferrin, cholera‐toxin subunit B and dextran. To describe virus endocytosis at the morphological level, we performed ultrastructural studies of viral internalization kinetics in control and actin dynamics‐blocked cells. Our results indicate that IBDV endocytic internalization was clathrin‐ and dynamin‐independent, and that IBDV uses macropinocytosis as the primary entry mechanism. After uptake, virus traffics to early endosomes and requires exposure to the low endocytic pH as well as a functional endocytic pathway to complete its replication cycle. Moreover, our results indicate that the GTPase Rab5 is crucial for IBDV entry supporting the participation of the early endosomal pathway in IBDV internalization and infection of susceptible cells.  相似文献   

16.
Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t(1/2) approximately 5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.  相似文献   

17.
The HIV-1 Tat protein is secreted by infected cells. Extracellular Tat can affect bystander uninfected T cells and induce numerous biological responses such as apoptosis and cytokine secretion. Tat is likely involved in several immune disorders during AIDS. Nevertheless, it is not known whether Tat triggers cell responses directly upon binding to signaling receptors at the plasma membrane or after delivery to the cytosol. The pathway that enables Tat to reach the cytosol is also unclear. Here we visualized Tat within T-cell-coated pits and endosomes. Moreover, inhibitors of clathrin/AP-2-mediated uptake such as chlorpromazine, activated RhoA, or dominant-negative mutants of Eps15, intersectin, dynamin, or rab5 impaired Tat delivery to the cytosol by preventing its endocytosis. Molecules neutralizing low endosomal pH or Hsp90 inhibitors abolished Tat entry at a later stage by blocking its endosomal translocation, as directly shown using a cell-free translocation assay. Finally, endosomal pH neutralization prevented Tat from inducing T-cell responses such as NF-kappaB activation, apoptosis, and interleukin secretion, indicating that cytosolic delivery is required for Tat signaling. Hence, Tat enters T cells essentially like diphtheria toxin, using clathrin-mediated endocytosis before low-pH-induced and Hsp90-assisted endosomal translocation. Cell responses are then induced from the cytosol.  相似文献   

18.
The entry of two dengue virus (DENV) serotypes into Vero cells was analysed using biochemical inhibitors, dominant negative mutants of cellular proteins involved in endocytic pathways, fluorescence microscopy and infectivity determinations. By treatment with dansylcadaverine and chlorpromazine and overexpression of a dominant negative form of the Eps15 protein, a clathrin-mediated endocytosis for productive DENV-1 internalization into Vero cells was demonstrated whereas the infectious entry of DENV-2 in the same cell system was independent of clathrin. Treatment with the inhibitors nystatin and methyl-β-cyclodextrin, as well as transfection of Vero cells with dominant negative caveolin-1, had no effect on DENV-2 virus infection. It was also shown, by using the K44A mutant and the inhibitor dynasore, that dynamin was required for DENV-2 entry. Consequently, the infectious entry of DENV-2 into Vero cells occurs by a non-classical endocytic pathway independent of clathrin, caveolae and lipid rafts, but dependent on dynamin. By contrast, DENV-2 entry into A549 cells was clathrin-dependent, as previously reported in HeLa, C6/36 and BS-C-1 cells. Our results conclusively show, for the first time, a differential mode of infective entry for DENV-1 and DENV-2 into a common host cell, Vero cells, as well as alternative entry pathways for a given serotype, DENV-2, into different types of cells.  相似文献   

19.
Biochemical characterization of rotavirus receptors in MA104 cells   总被引:5,自引:0,他引:5       下载免费PDF全文
We have tested the effect of metabolic inhibitors, membrane cholesterol depletion, and detergent extraction of cell surface molecules on the susceptibility of MA104 cells to infection by rotaviruses. Treatment of cells with tunicamycin, an inhibitor of protein N glycosylation, blocked the infectivity of the SA-dependent rotavirus RRV and its SA-independent variant nar3 by about 50%, while the inhibition of O glycosylation had no effect. The inhibitor of glycolipid biosynthesis d, l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) blocked the infectivity of RRV, nar3, and the human rotavirus strain Wa by about 70%. Sequestration of cholesterol from the cell membrane with beta-cyclodextrin reduced the infectivity of the three viruses by more than 90%. The involvement of N-glycoproteins, glycolipids, and cholesterol in rotavirus infection suggests that the virus receptor(s) might be forming part of lipid microdomains in the cell membrane. MA104 cells incubated with the nonionic detergent octyl-beta-glucoside (OG) showed a ca. 60% reduction in their ability to bind rotaviruses, the same degree to which they became refractory to infection, suggesting that OG extracts the potential virus receptor(s) from the cell surface. Accordingly, when preincubated with the viruses, the OG extract inhibited the virus infectivity by more than 95%. This inhibition was abolished when the extract was treated with either proteases or heat but not when it was treated with neuraminidase, indicating the protein nature of the inhibitor. Two protein fractions of around 57 and 75 kDa were isolated from the extract, and these fractions were shown to have rotavirus-blocking activity. Also, antibodies to these fractions efficiently inhibited the infectivity of the viruses in untreated as well as in neuraminidase-treated cells. Five individual protein bands of 30, 45, 57, 75, and 110 kDa, which exhibited virus-blocking activity, were finally isolated from the OG extract. These proteins are good candidates to function as rotavirus receptors.  相似文献   

20.
Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K(+) depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-beta-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号