首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid and protein changes due to freezing in Dunning AT-1 cells   总被引:5,自引:0,他引:5  
Defining the process of cellular injury during freezing, at the molecular level, is important for cryosurgical applications. This work shows changes to both membrane lipids and protein structures within AT-1 Dunning prostate tumor cells after a freezing stress which induced extreme injury and cell death. Cells were frozen in an uncontrolled fashion to -20 or -80 degrees C. Freezing resulted in an increase in the gel to liquid crystalline phase transition temperature (T(m)) of the cellular membranes and an increase in the temperature range over which the transition occurred, as determined by Fourier transform infrared spectroscopy (FTIR). Thin layer chromatography (TLC) analysis of total lipid extracts showed free fatty acids (FFA) in the frozen samples, indicating a change in the lipid composition. The final freezing temperature had no effect on the thermotropic response of the membranes or on the FFA content of the lipid fraction. The overall protein secondary structure as determined by FTIR showed only slight changes after freezing to -20 degrees C, in contrast to a strong and apparently irreversible denaturation after freezing to -80 degrees C. Taken together, these results suggest that the decrease in viability between control and frozen cells can be correlated with small changes in the membrane lipid composition and membrane fluidity. In addition, loss of cell viability is associated with massive protein denaturation as observed in cells frozen to -80 degrees C, which was not observed in samples frozen to -20 degrees C.  相似文献   

2.
Lipid droplets are “small” organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface. As model neutral lipid binding protein, we use apoLp-III, an amphipathic α-helix bundle protein. This domain is also found in proteins from the perilipin family and in apoE. Protein binding to the monolayer is studied by the decrease in the oil/water surface tension. Previous work used POPC (one of the major lipids found on lipid droplets) to form the phospholipid monolayer on the triolein surface. Here we expand this work by incorporating other lipids with different physico-chemical properties to study the effect of charge and lipid head-group size. This study sheds light on the affinity of this important protein domain to interact with lipids.  相似文献   

3.
The routine production and storage of frozen doughs are still problematic. Although commercial baker's yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial baker's yeast production and usage.  相似文献   

4.
The routine production and storage of frozen doughs are still problematic. Although commercial baker's yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial baker's yeast production and usage.  相似文献   

5.
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.  相似文献   

6.
The interaction of protein with lipid in wheat gluten has been studied by electron spin resonance (ESR). The gluten in the flour suspension was spin-labeled with a fatty acid spin label (N-oxyl-4,4'-dimethyloxazolidine derivative of 5-ketostearic acid) and washed out from the flour. The ESR spectra of the spin label incorporated in gluten exhibited clearly separated parallel and perpendicular hyperfine splittings. The orientation of the gluten lipid and its fluidity showed temperature dependence. Phase transition was observed at 25°C. Compared with gluten, vesicles of the lipids extracted from flour were found to be in a less oriented, highly fluid state, and with much lower activation energy for rotational viscosity, while the reconstituted gluten, which was prepared by mixing purified gluten protein and the extracted lipids, had a lipid environment similar to that of gluten. The results indicate that the lipid was immobilized in the gluten matrix by strong interaction with protein.  相似文献   

7.
Cells store lipids in droplets. Studies addressing how mammals control lipid-based energy homeostasis have implicated proteins of the PAT domain family, such as perilipin that surrounds the lipid droplets. Perilipin knock-out mice are lean and resistant to obesity. Factors that mediate lipid storage in fungi are still unknown. Here we describe a gene (Mpl1) in the economically important insect fungal pathogen Metarhizium anisopliae that has structural similarities to mammalian perilipins. Consistent with a role in lipid storage, Mpl1 is predominantly expressed when M. anisopliae is engaged in accumulating lipids and ectopically expressed green fluorescent protein-tagged MPL1 (Metarhizium perilipin-like protein) localized to lipid droplets. Mutant M. anisopliae lacking MPL1 have thinner hyphae, fewer lipid droplets, particularly in appressoria (specialized infection structures at the end of germ tubes), and a decrease in total lipids. Mpl1 therefore acts in a perilipin-like manner suggesting an evolutionary conserved function in lipid metabolism. However, reflecting general differences between animal and fungal lineages, these proteins have also been selected to cope with different tasks. Thus, turgor generation by DeltaMpl1 appressoria is dramatically reduced indicating that lipid droplets are required for solute accumulation. This was linked with the reduced ability to breach insect cuticle so that Mpl1 is a pathogenicity determinant. Blast searches of fungal genomes revealed that perilipin homologs are found only in pezizomycotinal ascomycetes and occur as single copy genes. Expression of Mpl1 in yeast cells, a fungus that lacks a perilipin-like gene, blocked their ability to mobilize lipids during starvation conditions.  相似文献   

8.
Summary The release of lipid droplets from the ovarian interstitial gland cells of thecal origin into the circulating blood has been studied by cytochemical methods. Estrous, preovulatory, and postovulatory ovaries of rabbits were used. Ovulation was induced by human chorionic gonadotropin (HCG) administration. The cytoplasm in the gland cells of estrous ovaries is filled with lipid droplets consisting of cholesterol or its esters, triglycerides, and some phospholipids. Mitochondria, Golgi zone, and diffuse lipoproteins are well differentiated. The lipid droplets decrease in interstitial gland cells of preovulatory ovaries stimulated with HCG. The release of lipid droplets by the formation of vacuoles is closely accompanied by a considerable loss of cytoplasm and its organelles; consequently the cells are reduced in size. Degenerating gland cells do not release their lipids because they are refractory to gonadotropic stimulation. The released secretory products are found in the form of discrete bodies between gland cells, in regions adjacent to blood vessels, and in the lumen of the latter. The mechanism by which the liberated lipids are transported into the circulation could not be determined. The depletion of lipid droplets is clearly related with the production of 20a-OH steroid (20a-hydroxy-pregn-4-en-3-one) and progesterone studied by other workers.The replenishment of cytoplasm and its organelles, and the formation and storage of secretory lipid granules have also been studied both in the preovulatory and postovulatory ovaries. The organelles could not be seen to be visibly related to lipid synthesis.  相似文献   

9.
Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.  相似文献   

10.
The Arctic pteropod Clione limacina was collected in Kongsfjorden, Svalbard, in mid June 2004, to study the lipid metabolism within the sites of lipid storage structures during long-term starvation. Animals survived in an aquarium without any food for nearly 1 year (356 days). Size, number of lipid droplets, dry and lipid mass, lipid class and fatty acid compositions of C. limacina were determined and separately analysed for the digestive gland and the remaining integument. During the starvation period, animals shrunk from 22.4 to 12 mm in length on average, and the number of lipid droplets decreased from 1,600 to 1,000 per animal. Dry mass (DM) and total lipid mass both dropped by about 80% from day 200 to the end. The lipid content as percentage DM of the total organism did not decrease significantly ranging from 43.8 to 32.3%DM. The lipid content of the trunk was moderate with about 20%DM. The digestive gland was very rich in lipids with more than 70%DM throughout the experiment and is the major site of lipid metabolism and storage. Triacylglycerols (TAG) decreased, in the total organism, from high initial levels of 62.6 to 43% of total lipid at the end. In contrast, the proportions of 1-O-alkyldiacylglycerols [diacylglycerol ethers (DAGE)] remained almost constant, varying between 20.4 and 28.4%. In the digestive gland, TAG ranged from 60.3 to 64.8% and DAGE from 23.6 to 32.2% from day 200 to the end of the experiment. TAG and DAGE of the trunk were most likely located in the lipid droplets and were almost depleted at the end of starvation. Besides their function as lipid deposit DAGE may also act as protecting substance against bacterial and fungal infections. During the first 200 days of starvation, the fatty acid compositions showed only small variations. Thereafter, fatty acids typical for storage lipids decreased in all body compartments. In adaptation to long periods of food scarcity, C. limacina has evolved various strategies as body shrinkage, utilisation of body constituents not essential for survival, a very low metabolism and slow lipid consumption.  相似文献   

11.
Somwar R  Roberts CT  Varlamov O 《FEBS letters》2011,585(12):1946-1950
Lipid droplets form the storage reservoirs for lipids in adipocytes, and their stable appearance suggests a static nature of lipid storage. A stable lipid store, however, may be maintained through the dynamic recycling of lipid cargo between the cytoplasmic compartment and the lipid droplet. In this study, we applied live-cell microscopy to follow intracellular transport steps of fluorescently labeled fatty acids in differentiated 3T3-L1 adipocytes. We demonstrate that intracellular lipids continuously exit and re-enter lipid droplets, and that individual lipid droplets exchange their content on a timescale of minutes. These data demonstrate a surprisingly high rate of intracellular lipid turnover in adipocytes and support the novel concept that lipid storage is achieved by dynamic recycling rather than static retention.  相似文献   

12.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

13.
Wang C  Liu Z  Huang X 《PloS one》2012,7(2):e32086
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.  相似文献   

14.
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size. EGCG treatment reduced the secretion of both triglycerides and apolipoprotein B-100 (apoB-100) VLDLs but not of transferrin, albumin, or total proteins, indicating that EGCG diverts triglycerides from VLDL assembly to storage in the cytosol. This is further supported by the observed increase in both intracellular degradation of apoB-100 and ubiquitination of the protein (indicative of increased proteasomal degradation) in EGCG-treated cells. EGCG did not interfere with the microsomal triglyceride transfer protein, and the effect of EGCG on the secretion of VLDLs was found to be independent of the LDL receptor. Thus, our results indicate that EGCG promotes the accumulation of triglycerides in cytosolic lipid droplets, thereby diverting lipids from the assembly of VLDL to storage in the cytosol. Our results also indicate that the accumulation of lipids in the cytosol is not always associated with increased secretion of VLDL.  相似文献   

15.
Although neutral lipid storage droplets are ubiquitous in eukaryotic cells, very little is known about how their synthesis and turnover are controlled. Adipocyte differentiation-related protein (ADRP; also known as adipophilin) is found on the surface of lipid droplets in most mammalian cell types. To learn how ADRP affects lipid storage, we stably expressed the protein in human embryonic kidney 293 (HEK 293) cells, which express little endogenous ADRP. As expected, ADRP was targeted to the surface of lipid droplets and caused an increase in triacylglycerol (TAG) mass under both basal and oleate-supplemented conditions. At least part of the increased mass resulted from a 50% decrease in the rate of TAG hydrolysis in ADRP-expressing cells. Furthermore, ADRP expression increased the fraction of total cellular TAG that was stored in lipid droplets. ADRP expression induced a striking decrease in the association of adipose triglyceride lipase (ATGL) and mannose-6-phosphate receptor tail-interacting protein of 47 kDa with lipid droplets and also decreased the lipid droplet association of several other unknown proteins. Transient expression of ADRP in two other cell lines also reduced the lipid droplet association of catalytically inactive ATGL. We conclude that the reduced lipid droplet association of ATGL and/or other lipases may explain the decrease in TAG turnover observed in ADRP-expressing HEK 293 cells.  相似文献   

16.
The effects of frozen storage (0–120 day) on the secondary structure and molecular chain conformation of hydrated gluten were investigated using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). After frozen storage, no changes were observed in the secondary structure of the 60% hydrated gluten; spectra were consistent with a tight ordered structure with many interchain hydrogen bond interactions. For the dehydrated gluten, more complex changes took place: during frozen storage for up to 60 days, there were distinctive changes in the low-frequency region of the amide I band (1618–1633 cm?1) which were attributed to changes in the β-sheet structure. However, with the increase of frozen storage from 60 to 120 days, a band near 1614 cm?1 replaced that at 1659 cm?1 illustrate that the formation of protein aggregates during the long-time frozen storage, which along with the establishment of new intermolecular non-covalent bonds within the protein molecule or between two neighboring molecules. AFM images showed that the gluten chain formed a fibril-like branched network, and this network was weakened with increasing frozen storage time.  相似文献   

17.
《Biophysical journal》2020,118(7):1588-1601
The lipid matrix in the outer layer of mammalian skin, the stratum corneum, has been previously investigated by multiple biophysical techniques aimed at identifying hydrophilic and lipophilic pathways of permeation. Although consensus is developing over the microscopic structure of the lipid matrix, no molecular-resolution model describes the permeability of all chemical species simultaneously. Using molecular dynamics simulations of a model mixture of skin lipids, the self-assembly of the lipid matrix lamellae has been studied. At higher humidity, the resulting lamellar phase is maintained by partitioning excess water into isolated droplets of controlled size and spatial distribution. The droplets may fuse together to form intralamellar water channels, thereby providing a pathway for the permeation of hydrophilic species. These results reconcile competing data on the outer skin’s structure and broaden the scope of molecular-based methods to improve the safety of topical products and to advance transdermal drug delivery.  相似文献   

18.
Adipocyte differentiation-related protein (ADrP) is an intrinsic lipid storage droplet protein that is highly expressed in lung. ADrP localizes to lipid storage droplets within lipofibroblasts, pulmonary cells characterized by high triacylglycerol, which is a precursor for surfactant phospholipid synthesis by alveolar type II epithelial (EPII) cells. The developmental pattern of ADrP mRNA and protein expression in lung tissue parallels triacylglycerol accumulation in rat lung. ADrP mRNA levels are relatively high in isolated lipofibroblasts, accounting for the high ADrP expression in lung. Isolated EPII cells, which do not store neutral lipids but derive them from lipofibroblasts, have low levels of ADrP mRNA expression. ADrP is found around lipid droplets in cultured lipofibroblasts, but not in EPII cells isolated from developing rat lung. After coculture with lipofibroblasts, EPII cells acquired ADrP, which associates with lipid droplets. Furthermore, (3)H-labeled triolein in isolated ADrP-coated lipid droplets is a tenfold better substrate for surfactant phospholipid synthesis by cultured EPII cells than (3)H-labeled synthetic triolein alone. Antibodies to ADrP block transfer of neutral lipid. These data suggest a role for ADrP in this novel mechanism for the transfer of lipid between lipofibroblasts and EPII cells.  相似文献   

19.
Histological and morphometric techniques were employed in juvenile Senegalese sole (Solea senegalensis) livers to evaluate diet‐related adaptive changes and to establish how an integrated morphofunctional approach could improve the understanding of rearing strategies. Four isoenergetic diets with variable protein/lipid content (44/22, 49/20, 54/18 and 59/16) were formulated. Data compared statistically showed that an increase in protein and decrease of lipid in the diet was associated with a significantly higher specific growth rate (SGR) and reduced feed conversion rate (FCR). Histologic evaluation (visual scoring of lipid storage) and morphometry (area and perimeter) of hepatocytes showed that a high lipid diet resulted in increased lipid storage. The data confirmed that a concomitant decrease of protein with an increase in lipids in the diet led to a massive storage of unused lipid within hepatocytes associated with a reduced growth performance.  相似文献   

20.
Many cells store neutral lipids, as triacylglycerol and sterol esters, in droplets. PAT-domain proteins form a conserved family of proteins that are localized at the surface of neutral lipid droplets. Two mammalian members of this family, Perilipin and adipose differentiation-related protein, are involved in lipid storage and regulate lipolysis. Here, we describe the Drosophila PAT-family member Lsd2. We showed that Lsd2 is predominantly expressed in tissues engaged in high levels of lipid metabolism, the fat body and the germ line of females. Ultrastructural analysis in the germ line showed that Lsd2 localizes to the surface of lipid droplets. We have generated an Lsd2 mutant and described its phenotype. Mutant adults have a reduced level of neutral lipid content compared to wild type, showing that Lsd2 is required for normal lipid storage. In addition, ovaries from Lsd2 mutant females exhibit an abnormal pattern of accumulation of neutral lipids from mid-oogenesis, which results in reduced deposition of lipids in the egg. Consistent with its expression in the female germ line, we showed that Lsd2 is a maternal effect gene that is required for normal embryogenesis. This work demonstrates that Lsd2 has an evolutionarily conserved function in lipid metabolism and establishes Drosophila melanogaster as a new in vivo model for studies on the PAT-family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号