首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yamaguchi  Naomi  Hosomi  Eriko  Hori  Yutaro  Ro  Shoki  Maezawa  Kosuke  Ochiai  Mitsuko  Nagoshi  Sumiko  Takayama  Kiyoshige  Yakabi  Koji 《Neurochemical research》2020,45(9):2173-2183

Cholecystokinin (CCK) had been the first gastrointestinal hormone known to exert anorexic effects. CCK had been inferred to contribute to the onset of functional dyspepsia (FD) symptoms. To understand the pathophysiology of FD, the roles of stress have to be clarified. In this study, we aimed to clarify the influence of stress on the action of cholecystokinin (CCK) on appetite and gastric emptying. Using rats, stress was simulated by giving restraint stress or intraperitoneal injection of the stress-related peptide hormone urocortin 1 (UCN1). The effects of CCK and restraint stress, alone or in combination, on food intake and gastric motility were examined, and c-Fos expression in the neurons of appetite control network in the central nervous system was assessed by immunohistochemical staining. CCK inhibited food intake and gastric emptying in a dose-dependent manner. Food intake for 1 h was significantly lower with UCN1 (2 nmol/kg) than with the saline control. Restraint stress amplified the suppressive effects of CCK on food intake for 1 h and on gastric emptying. With regard to brain function, the CCK induced c-Fos expression in the neurons of the nucleus tractus solitarius and paraventricular nucleus of the hypothalamus was markedly and significantly amplified by the addition of restraint stress with CCK. The results suggested that stress might amplify the anorexic effects of CCK through activation of the nuclei that comprise the brain neuronal network for satiation; this might play a role in the pathogenesis of the postprandial distress syndromes of functional dyspepsia.

  相似文献   

2.
We examined the involvement of thyrotropin-releasing hormone (TRH) and TRH type 1 and 2 receptors (TRH-R1 and TRH-R2, respectively) in the regulation of hypothalamic neuronal histamine. Infusion of 100 nmol TRH into the rat third cerebroventricle (3vt) significantly decreased food intake (p < 0.05) compared to controls infused with phosphate- buffered saline. This TRH-induced suppression of food intake was attenuated partially in histamine-depleted rats pre-treated with alpha-fluoromethylhistidine (a specific suicide inhibitor of histidine decarboxylase) and in mice with targeted disruption of histamine H1 receptors. Infusion of TRH into the 3vt increased histamine turnover as assessed by pargyline-induced accumulation of tele-methylhistamine (t-MH, a major metabolite of neuronal histamine in the brain) in the tuberomammillary nucleus (TMN), the paraventricular nucleus, and the ventromedial hypothalamic nucleus in rats. In addition, TRH-induced decrease of food intake and increase of histamine turnover were in a dose-dependent manner. Microinfusion of TRH into the TMN increased t-MH content, histidine decarboxylase (HDC) activity and expression of HDC mRNA in the TMN. Immunohistochemical analysis revealed that TRH-R2, but not TRH-R1, was expressed within the cell bodies of histaminergic neurons in the TMN of rats. These results indicate that hypothalamic neuronal histamine mediates the TRH-induced suppression of feeding behavior.  相似文献   

3.
The ovarian hormone estradiol reduces meal size and food intake in female rats, at least in part by increasing the satiating potency of CCK. Here we used c-Fos immunohistochemistry to determine whether estradiol increases CCK-induced neuronal activation in several brain regions implicated in the control of feeding. Because the adiposity signals leptin and insulin appear to control feeding in part by increasing the satiating potency of CCK, we also examined whether increased adiposity after ovariectomy influences estradiol's effects on CCK-induced c-Fos expression. Ovariectomized rats were injected subcutaneously with 10 microg 17beta-estradiol benzoate (estradiol) or vehicle once each on Monday and Tuesday for 1 wk (experiment 1) or for 5 wk (experiment 2). Two days after the final injection of estradiol or vehicle, rats were injected intraperitoneally with 4 microg/kg CCK in 1 ml/kg 0.9 M NaCl or with vehicle alone. Rats were perfused 60 min later, and brain tissue was collected and processed for c-Fos immunoreactivity. CCK induced c-Fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus of the hypothalamus (PVN), and central nucleus of the amygdala (CeA) in vehicle- and estradiol-treated ovariectomized rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, the PVN, and the CeA, but not in the rostral NTS or AP. This action of estradiol was very similar in rats tested before (experiment 1) and after (experiment 2) significant body weight gain, suggesting that adiposity does not modulate CCK-induced c-Fos expression or interact with estradiol's ability to modulate CCK-induced c-Fos expression. These findings suggest that estradiol inhibits meal size and food intake by increasing the central processing of the vagal CCK satiation signal.  相似文献   

4.
目的:探讨下丘脑催产素(OXT)对大鼠摄食和胃动力的影响及调控机制。方法:采用荧光金逆行追踪结合免疫组化实验,观察大鼠视上核(SON)与弓状核(ARC)之间的神经通路;采用核团置管术观察ARC微量注射OXT对大鼠摄食的影响;采用单极电刺激观察电刺激SON对大鼠胃运动的影响及ARC微量注射OXT对大鼠胃运动和胃排空的影响。结果:荧光金逆行追踪结合免疫组化实验显示大鼠SON与ARC之间存在神经通路;ARC微量注射OXT大鼠0-2 h、0-3 h和0-4 h摄食量显著下降,OXT受体拮抗剂阿托西班可完全阻断OXT的抑制摄食作用,注射OXT和缩胆囊素(CCK)受体拮抗剂MK-329混合液后,OXT对大鼠摄食的抑制作用被部分阻断;电刺激SON,大鼠胃运动幅度和频率显著增强,预先向ARC内微量注射阿托西班后再电刺激SON,电刺激SON对胃运动的促进作用进一步增强;ARC微量注射OXT后,大鼠胃运动幅度和频率显著降低,阿托西班可完全阻断OXT对胃运动幅度和频率的抑制作用,MK-329可部分阻断OXT对胃运动幅度和频率的抑制作用;ARC微量注射OTX后,大鼠胃排空率显著降低,阿托西班可完全阻断OXT对胃排空的抑制作用,MK-329可部分阻断OXT对胃排空的抑制作用。结论:SON-ARC内具有OXT神经通路,且该通路由CCK介导。  相似文献   

5.
Obese CCK-1 receptor-lacking Otsuka Long Evans Tokushima fatty (OLETF) rats are hyperphagic relative to control, nonmutant Long Evans Tokushima Otsuka (LETO) rats. This study sought to assess whether the overeating observed in OLETF rats is associated with changes in gastric emptying rates or detection of gastric volume. We performed experiments in both 12- and 29-wk-old OLETF and LETO rats to address possible alterations in gastric functions during the development of increased body weight and blood glucose abnormalities in OLETF rats. Gastric emptying of a 5-g solid chow test meal was not significantly different between strains at either 1, 2, or 4 h postmeal. When rats with ad libitum access to chow were tested, there were no significant differences in gastric emptying between strains at any time period despite OLETF rats consuming significantly more chow than LETO rats. Similar to solid food, 5-min gastric emptying of a 5-ml isosmotic and hyperosmotic saline or glucose load was not significantly different between strains. When the stomach was distended with a 15-ml semisolid chow load, there was no significance difference in emptying at either 1 or 2 h. No significant differences in gastric emptying were detected between 12- and 29-wk-old rats under any conditions. Both young and old OLETF rats, however, reduced sham intake significantly less compared with LETO rats during a brief period of gastric distension by 5- or 10-ml balloon inflation. Finally, OLETF rats showed decreased Fos expression in the nucleus of the solitary tract relative to LETO rats after an 8-ml gastric distension. These findings demonstrate that OLETF rats do not express deficits in controlling gastric emptying rates; however, they exhibit decreased behavioral and vagal responsiveness to gastric distension that may contribute to the increased meal size in these animals.  相似文献   

6.
7.
Vagal afferents play a role in gut-brain signaling of physiological and pathological stimuli. Here, we investigated how backdiffusion of luminal HCl or NH(4)OH and pentagastrin-stimulated acid secretion interact in the communication between rat stomach and brain stem. Rats were pretreated intraperitoneally with vehicle or appropriate doses of cimetidine, omeprazole, pentagastrin, dexloxiglumide (CCK(1) receptor antagonist), and itriglumide (CCK(2) receptor antagonist) before intragastric administration of saline or backdiffusing concentrations of HCl or NH(4)OH. Two hours later, neuronal activation in the nucleus of the solitary tract (NTS) and area postrema was visualized by c-Fos immunohistochemistry. Exposure of the rat gastric mucosa to HCl (0.15-0.5 M) or NH(4)OH (0.1-0.3 M) led to a concentration-dependent expression of c-Fos in the NTS, which was not related to gender, gastric mucosal injury, or gastropyloric motor alterations. The c-Fos response to HCl was diminished by cimetidine and omeprazole, enhanced by pentagastrin, and left unchanged by dexloxiglumide and itriglumide. Pentagastrin alone caused an omeprazole-resistant expression of c-fos, which in the NTS was attenuated by itriglumide and prevented by dexloxiglumide but in the area postrema was reduced by dexloxiglumide and abolished by itriglumide. We conclude that vagal afferents transmit physiological stimuli (gastrin) and pathological events (backdiffusion of luminal HCl or NH(4)OH) from the stomach to the brain stem. These communication modalities interact because, firstly, acid secretion enhances afferent signaling of gastric acid backdiffusion and, secondly, gastrin activates NTS neurons through stimulation of CCK(1) receptors on vagal afferents and of CCK(2) receptors on area postrema neurons projecting to the NTS.  相似文献   

8.
Phrenic nerve afferents (PNa) have been shown to activate neurons in the spinal cord, brain stem, and forebrain regions. The c-Fos technique has been widely used as a method to identify neuronal regions activated by afferent stimulation. This technique was used to identify central neural areas activated by PNa. The right phrenic nerve of urethane-anesthetized rats was stimulated in the thorax. The spinal cord and brain were sectioned and stained for c-Fos expression. Labeled neurons were found in the dorsal horn laminae I and II of the C3-C5 spinal cord ipsilateral to the site of PNa stimulation. c-Fos-labeled neurons were found bilaterally in the medial subnuclei of the nucleus of the solitary tract, rostral ventral respiratory group, and ventrolateral medullary reticular formation. c-Fos-labeled neurons were found bilaterally in the paraventricular and supraoptic hypothalamic nuclei, in the paraventricular thalamic nucleus, and in the central nucleus of the amygdala. The presence of c-Fos suggests that these neurons are involved in PNa information processing and a component of the central mechanisms regulating respiratory function.  相似文献   

9.
The antisense approach and immunohistochemistry were used to study the effects of different muscarinic receptor (M) subtypes and glial cell derived neurotrophic factor (GDNF) on the scores of morphine-withdrawal syndrome and the expression of c-Fos in locus coeruleus (LC). Intrathecal injection of M2 receptor antisense oligonucleotides (M2AS-oligo) or GDNF antisense oligonucleotides (GDNFAS-oligo) decreased the scores of morphine withdrawal syndrome. The expression of c-Fos positive neurons in the LC increased in morphine-dependent rats and increased to a greater extent after the injection of naloxone (4mg/kg, ip) in morphine dependent rats. Intrathecal injection of M2AS-oligo or GDNFAS-oligo inhibited the increase of c-Fos expression in LC during morphine withdrawal, but there was no effect in case of M1AS-oligo. The results suggest that M2 receptor of spinal cord mediates the neural activation of LC during morphine withdrawal. And the interaction between neurons and glial cells may be involved in the ascending activation process.  相似文献   

10.
We reported previously that intravenously administered d-glucose acts in the central nervous system to inhibit gastric motility induced by hypoglycemia in anesthetized rats. The purpose of this study was to determine whether this effect is due to inhibition of dorsal motor nucleus of the vagus (DMV) cholinergic motoneurons, which synapse with postganglionic cholinergic neurons, or to excitation of DMV cholinergic neurons, which synapse with postganglionic nonadrenergic, noncholinergic (NANC) neurons, particularly nitrergic neurons. Three approaches were employed: 1) assessment of the efficacy of d-glucose-induced inhibition of gastric motility in hypoglycemic rats with and without inhibition of nitric oxide synthase [10 mg/kg iv nitro-l-arginine methyl ester (l-NAME)], 2) assessment of the efficacy of intravenous bethanechol (30 mug.kg(-1).min(-1)) to stimulate gastric motility in hypoglycemic rats during the time of d-glucose-induced inhibition of gastric motility, and 3) determination of c-Fos expression in DMV neurons after intravenous d-glucose was administered to normoglycemic rats. Results obtained demonstrated that l-NAME treatment had no effect on d-glucose-induced inhibition of gastric motility; there was no reduction in the efficacy of intravenous bethanechol to increase gastric motility, and c-Fos expression was not induced by d-glucose in DMV neurons that project to the stomach. These findings indicate that excitation of DMV cholinergic motoneurons that synapse with postganglionic NANC neurons is not a significant contributing component of d-glucose-induced inhibition of gastric motility.  相似文献   

11.
The effects of acute pretreatment of rats with corticosterone (5 and 20 mg/kg, s.c.) on emotional behavior, expression of c-Fos protein in brain structures, and serum concentration of corticosterone were studied to model the short-term glucocorticoid-dependent changes in brain functions. Corticosterone was administered 90 min before training of a conditioned fear reaction (a freezing response), and behavioral, hormonal and immunocytochemical effects were examined 1 day later, on the test day. Pretreatment of rats with corticosterone significantly attenuated the freezing reaction in the conditioned fear test. The effect of the corticosterone was accompanied by a selective enhancement of the aversive context-induced c-Fos expression in some brain structures: the parvocellular and magnocellular neurons of the paraventricular hypothalamic nucleus (pPVN and mPVN), the medial amygdala nucleus (MeA), and the cingulate cortex, area 1 (Cg1), as well as an increase in the concentration of aversive context-induced endogenous serum glucocorticoid, 1.5 h and 10 min after the test session, respectively. It is suggested that the behavioral effects of acute pretreatment of rats with corticosterone could be due to changes in the mnemonic processes in the brain, inhibition of brain corticotropin releasing factor (CRF) synthesis, or stimulation of GABA-A receptor modulating neurosteroids synthesis. It is hypothesized that the enhanced activity of Cg1, MeA, pPVN, and mPVN, and the hypothalamic-pituitary-adrenal axis with concomitant increased serum glucocorticoid concentration, might serve to facilitate active coping behavior in a threatening situation.  相似文献   

12.
Fos-Tau-LacZ (FTL) transgenic mice are used to visualize the anatomical connectivity of neurons that express c-Fos, an immediate early gene, in response to activation. In contrast to typical c-Fos protein expression, which is localized to the nucleus of stimulated neurons, activation of the c-Fos gene results in beta galactosidase (β-gal) expression throughout the entire cytoplasm of activated cells in FTL mice; thereby making it possible to discern the morphology of c-Fos expressing cells. This can be an especially important tool in brain areas in which function may be related to cell morphology, such as the primary taste/viscerosensory brainstem nucleus of the solitary tract (nTS). Thus, to further characterize FTL activity in the brain, the current study quantified both β-gal enzymatic activity as well as c-Fos protein expression in the nTS under a variety of experimental conditions (no stimulation, no stimulation with prior overnight food and water restriction, monosodium glutamate taste stimulation, and monosodium glutamate taste stimulation with perfusion 5 h post stimulation). Contrary to previous research, we found that β-gal activity (both labeled cell bodies and overall number of labeled pixels) was unchanged across all experimental conditions. However, traditional c-Fos protein activity (both cell bodies and number of activated pixels) varied significantly across experimental conditions, with the greatest amount of c-Fos protein label found in the group that received monosodium glutamate taste stimulation. Interestingly, although many c-Fos positive cells were also β-gal positive in the taste stimulated group, some c-Fos protein labeled cells were not co-labeled with β-gal. Together, these data suggest that β-gal staining within the nTS reflects a stable population of β-gal- positive neurons whose pattern of expression is unaffected by experimental condition.  相似文献   

13.
应用免疫组化方法观察鞘内注射毒蕈碱型乙酰胆碱(muscarinic acetylcholine receptor,M) 受体和胶质细胞源性神经营养因子(glial cell derived neurotrophic factor,GDNF)反义寡脱氧核苷酸对吗啡戒断大鼠蓝斑(locus coeruleus,LC)区内Fos表达的影响。结果显示,鞘内注射M_2受体和GDNF反义寡脱氧核苷酸明显减少大鼠吗啡戒断症状评分值(n=6,P<0.05)。正常大鼠LC区神经元Fos基础表达较低,吗啡依赖大鼠LC区神经元Fos表达增加,吗啡依赖大鼠纳酪酮(4mg/Kg,ip)催促戒断后,Fos表达进一步增加;鞘内注射M_2受体和GDNF反义寡脱氧核苷酸处理后均减少吗啡戒断大鼠LC区神经元Fos表达(n=5,P<0.05)。而鞘内注射M_1受体反义寡脱氧核苷酸处理组LC 区神经元Fos表达较吗啡戒断组没有显著差异(n=5,P>O.05)。结果提示:脊髓M_2受体调节吗啡戒断时LC区的神经元激活,而这种神经上行性激活涉及神经元与胶质细胞之间的适应性调节。  相似文献   

14.
目的: 探究糖尿病大鼠弓状核(ARC)-海马肥胖抑素(obestatin)神经通路构成,以及该通路对大鼠胃运动、胃排空的影响。方法: 健康雄性Wistar大鼠采用果糖溶液诱导胰岛素抵抗加腹腔注射链脲佐菌素的方法制备糖尿病模型,造模之后,随机分为5组:对照组(NS组)、0.1、1和10 pmol obestatin组、obestatin+NBI27914组,每组7只;各组通过置管分别向海马内注射0.5 μl 生理盐水(NS)、obestatin(0.1 pmol、1 pmol、10 pmol)和混合液(10 pmol obestatin + 60 pmol NBI27914),给药后立即记录大鼠胃运动,15 min后进行胃排空研究;通过荧光金(FG)逆行追踪及免疫组化方法比较正常及糖尿病大鼠ARC-海马obestatin神经通路构及ARC obestatin mRNA表达的异同。结果: 与正常大鼠相比,糖尿病大鼠ARC FG/obestatin双标神经元数目显著减少(P<0.05),ARC obestatin mRNA表达量显著下降(P<0.05);obestatin各组可剂量依赖性的抑制大鼠胃运动及胃排空(P<0.05~0.01),obestatin的这些效应可被促肾上腺皮质激素受体1(CRFR1)阻断剂NBI27914部分阻断(P<0.05);obestatin对糖尿病大鼠胃运动和胃排空的抑制效应显著减弱(P<0.05)。结论: ARC-海马之间存在obestatin神经和功能通路,参与糖尿病大鼠胃运动及胃排空调控,且CRFR1信号通路参与该过程。该通路功能的减弱可能参与了糖尿病早期胃动力紊乱的发病。  相似文献   

15.
16.
The effects of juice from Morinda citrifolia (noni) on gastric emptying, gastrointestinal transit, and plasma level of cholecystokinin (CCK) in rats were studied. Male rats were given noni by gavage at levels of 0.25, 1, or 4 ml/kg once per day for one or 7 days. The rats in the control group were given water, while the rats in the experimental group were fasted overnight before measurement of gastrointestinal motility. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal (10%) and Na251CrO4 (0.5 microCi/ml). Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Then, gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Finally, blood samples were collected for measurement of CCK by radioimmunoassay. The administration of noni at 0.25 ml/kg, but not at 1 ml/kg and 4 ml/kg, for 1 day significantly inhibited gastric emptying. In contrast, gastric emptying was significantly inhibited by oral noni (0.25, 1, or 4 ml/kg) for 7 days. Intraperitoneal injection of lorglumide (5 or 10 mg/kg), a selective CCK1 receptor antagonist, effectively attenuated the noni-induced inhibition of gastric emptying. The intestinal transit and body weight, food intake, water intake, urine volume as well as feces weight were not altered by the administration of noni either acutely or chronically, but the administration of oral noni (1 ml/kg) for 7 days increased the level of plasma CCK in male rats. These results suggest that oral noni inhibits gastric emptying in male rats via a mechanism involving stimulation of CCK secretion and CCK1 receptor activation.  相似文献   

17.
18.
目的:探讨下丘脑室旁核(hypothalamic paraventricular nucleus,PVN)注射GLP-1(胰高血糖素样肽-1)对糖尿病大鼠胃排空的影响及机制。方法:30只Wistar大鼠随机分为正常对照组(NC组)、糖尿病组(DM组)和GLP-1干预组(GLP-1组),每组各10只。DM组和GLP-1组腹腔注射链脲佐菌素,三组大鼠均PVN区埋置套管,恢复7d,GLP-1组微量注射0.5μg/0.5μl的GLP-1,NC组和DM组大鼠PVN区微量注射等体积生理盐水。甲基纤维素-酚红灌胃法检测胃排空;半定量RT-PCR检测大鼠下丘脑GLP-1RmRNA的表达。结果:DM组胃排空率较NC组明显升高(P<0.05),GLP-1组胃排空明显低于DM组(P<0.05),GLP-1组和NC组差异无统计学意义(P>0.05)。GLP-1组下丘脑GLP-1RmRNA的表达明显高于DM组和NC组(P<0.05),并与胃排空率成负相关(P<0.05)。DM组和NC组差异无统计学意义(P>0.05)。结论:PVN区注射GLP-1可以抑制糖尿病大鼠早期胃排空加速,作用机制可能和促进下丘脑GLP-1受体表达有关。  相似文献   

19.
The present study was carried out with the aim to observe whether, in the rat, the electric activation of the projection form the cerebellar lateral nucleus (LN) to the basilar pontine nuclei (BPN) and to the reticulotegmental nucleus (RtTg) is capable to induce the c-Fos expression. In particular, we compared the effects of a continuous LN stimulation at low-frequency (tonic stimulation) with those induced by high frequency pulse trains (phasic stimulation). The observed results show that the stimulation of LN induces c-Fos expression in a significant fraction of neurons in the contralateral BPN and RtTg. It was also observed that phasic stimulation was slightly more capable in producing c-Fos expression with respect to the tonic stimulation. Furthermore, systemic injection of MK-801, a non-competitive antagonist of the NMDA receptor, reduced the LN-induced c-Fos expression in BPN and RtTg. In contrast, GYKI 52466, an AMPA/kainate receptor antagonist, did not change the LN driven induction of c-Fos in both BPN and RtTg.  相似文献   

20.
Nesfatin-1, a novel hypothalamic peptide, inhibits nocturnal feeding behavior and gastrointestinal motility in rodents. The effects of nesfatin-1 on gastrointestinal secretory function, including gastric acid production, have not been evaluated. Nesfatin-1 was injected into the fourth intracerebral ventricle (4V) of chronically cannulated rats to identify a nesfatin dose sufficient to inhibit food intake. Nesfatin-1 (2 μg) inhibited dark-phase food intake, in a dose-dependent fashion, for >3 h. Gastric acid production was evaluated in urethane-anesthetized rats. Nesfatin-1 (2 μg) was introduced via the 4V following endocrine stimulation of gastric acid secretion by pentagastrin (2 μg·kg(-1)·h(-1) iv), vagal stimulation with 2-deoxy-d-glucose (200 mg/kg sc), or no stimulus. Gastric secretions were collected via gastric cannula and neutralized by titration to determine acid content. Nesfatin-1 did not affect basal and pentagastrin-stimulated gastric acid secretion, whereas 2-deoxy-d-glucose-stimulated gastric acid production was inhibited by nesfatin-1 in a dose-dependent manner. c-Fos immunofluorescence in brain sections was used to evaluate in vivo neuronal activation by nesfatin-1 administered via the 4V. Nesfatin-1 caused activation of efferent vagal neurons, as evidenced by a 16-fold increase in the mean number of c-Fos-positive neurons in the dorsal motor nucleus of the vagus (DMNV) in nesfatin-1-treated animals vs. controls (P < 0.01). Finally, nesfatin-induced Ca(2+) signaling was evaluated in primary cultured DMNV neurons from neonatal rats. Nesfatin-1 caused dose-dependent Ca(2+) increments in 95% of cultured DMNV neurons. These studies demonstrate that central administration of nesfatin-1, at doses sufficient to inhibit food intake, results in inhibition of vagally stimulated secretion of gastric acid. Nesfatin-1 activates DMNV efferent vagal neurons in vivo and triggers Ca(2+) signaling in cultured DMNV neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号