首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown previously [Tang, Wang & Tsou (1988) Biochem. J. 255, 451-455] that, under appropriate conditions, native insulin can be obtained from scrambled insulin or the S-sulphonates of the chains with a yield of 25-30%, together with reaction products containing the separated A and B chains. The native hormone is by far the predominant product among the isomers containing both chains. It is now shown that the presence of added C peptide has no appreciable effect on the yield of native insulin. At higher temperatures the content of the native hormone decreases whereas those of the separated chains increase, and in no case was scrambled insulin containing both chains the predominant product in the absence of denaturants. Both the scrambling and the unscrambling reactions give similar h.p.l.c. profiles for the products. Under similar conditions cross-linked insulin with native disulphide linkages can be obtained from the scrambled molecule or from the S-sulphonate derivative with yields of 50% and 75% respectively at 4 degrees C, and with a dilute solution of the hexa-S-sulphonate yields better than 90% can be obtained. The regenerated product is shown to have the native disulphide bridges by treatment with CNBr to give insulin and by the identity of the h.p.l.c. profile of its peptic hydrolysate with that for cross-linked insulin. It appears that the insulin A and B chains contain sufficient information for the formation of the native molecule and that the role of the connecting C peptide is to bring and to keep the two chains together.  相似文献   

2.
3.
Type-I procollagen,14C-biosynthetically labelled, was reduced under denaturing and non-denaturing conditions. Reoxidation to disulphide-linked trimers occurred with non-denatured chains in the presence of an oxidant system containing oxidized and reduced glutathione. Dimeric intermediates were not detected. This reoxidation was accelerated by homogeneous beef liver protein disulphide-isomerase.  相似文献   

4.
1. Protein disulphide-isomerase (EC 5.3.4.1) and glutathione-insulin transhydrogenase (EC 1.8.4.2) were resolved by covalent chromatography. Both activities, in a partially purified preparation from bovine liver, bind covalently as mixed disulphides to activated thiopropyl-Sepharose 6B, in a new stepwise elution procedure protein disulphide-isomerase is displaced in mildly reducing conditions whereas glutathione-insulin transhydrogenase is only displaced by more extreme reducing conditions. 2. This together with evidence for partial resolution of the two activities by ion-exchange chromatography, conclusively establishes that the two activities are not alternative activities of a single bovine liver enzyme. 3. Protein disulphide-isomerase, partially purified by a published procedure, has now been further purified by covalent chromatography and ion-exchange chromatography. The final material is 560-fold purified relative to a bovine liver homogenate; it has barely detectable glutathione-insulin transhydrogenase activity. 4. The purified protein disulphide-isomerase shows a single major band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis corresponding to a mol.wt. of 57000. 5. The purified protein disulphide-isomerase has Km values for 'scrambled' ribonuclease and dithiothreitol of 23 microgram/ml and 5.4 microM respectively and has a sharp pH optimum at 7.5. The enzyme has a broad thiol-specificity, and several monothiols, at 1mM, can replace dithiothreitol. 6. The purified protein disulphide-isomerase is completely inactivated after incubation with a 2-3 fold molar excess of iodoacetate. The enzyme is also significantly inhibited by low concentrations of Cd2+ ions. These findings strongly suggest the existence of a vicinal dithiol group essential for enzyme activity. 7. When a range of thiols were used as co-substrates for protein disulphide-isomerase activity, the activities were found to co-purify quantitatively, implying the presence of a single protein disulphide-isomerase of broad thiol-specificity. Glutathione-disulphide transhydrogenase activities, assayed with a range of disulphide compounds, did not co-purify quantitatively.  相似文献   

5.
Protein disulphide-isomerase from bovine liver was purified to homogeneity as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, two-dimensional electrophoresis and N-terminal amino acid analysis. The preparative procedure, a modification of that of Carmichael, Morin & Dixon [(1977) J. Biol. Chem. 252, 7163-7167], is much faster and higher-yielding than previous procedures, and the final purified material is of higher specific activity. The enzyme has Mr 57 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, both in the presence and in the absence of thiol compounds. Gel-filtration studies on Sephadex G-200 indicate an Mr of 107 000, suggesting that the native enzyme is a homodimer with no interchain disulphide bonds. Ultracentrifugation studies give a sedimentation coefficient of 3.5S, implying that the enzyme sediments as the monomer. The isoelectric point, in the presence of 8 M-urea, is 4.2, and some microheterogeneity is detectable. The amino acid composition is comparable with previous analyses of this enzyme from bovine liver and of other preparations of thiol:protein disulphide oxidoreductases whose relation to protein disulphide-isomerase has been controversial. The enzyme contains a very high proportion of Glx + Asx residues (27%). The N-terminal residue is His. The pure enzyme has a very small carbohydrate content, determined as 0.5-1.0% by the phenol/H2SO4 assay. Unless specific steps are taken to remove it, the purified enzyme contains a small amount (5 mol/mol of enzyme) of Triton X-100 carried through the purification.  相似文献   

6.
A two-step procedure is described for the purification of protein disulphide-isomerase (PDI). This procedure is based on the previous finding that the beta-subunit of the prolyl 4-hydroxylase tetramer (alpha 2 beta 2) is identical with PDI [Koivu, Myllylä, Helaakoski, Pihlajaniemi, Tasanen & Kivirikko (1987) J. Biol. Chem. 262, 6447-6449; Pihlajaniemi, Helaakoski, Tasanen, Myllylä, Huhtala, Koivu & Kivirikko (1987) EMBO J. 6, 643-649]. The procedure involves purification of the prolyl 4-hydroxylase tetramer by a simple affinity chromatography and subsequent isolation of the beta-subunit from the dissociated tetramer by ion-exchange chromatography.  相似文献   

7.
The latency of rat liver microsomal protein disulphide-isomerase.   总被引:3,自引:1,他引:3       下载免费PDF全文
Protein disulphide-isomerase (PDI) activity was not detectable in freshly prepared rat liver microsomes (microsomal fraction), but became detectable after treatments that damage membrane integrity, e.g. sonication, detergent treatment or freezing and thawing. Maximum activity was detectable after sonication. Identical latency was observed in microsomes prepared by gel filtration and in those prepared by high-speed centrifugation. PDI activity was latent in all particulate subcellular fractions, but not latent in the high-speed supernatant. When all fractions were sonicated to expose total PDI activity, PDI was found at highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum. Washing of microsomes under various conditions that removed peripheral proteins and, in some cases, bound ribosomes did not remove significant quantities of PDI, nor did it affect the latency of PDI activity. Treatment of microsomes with proteinases, under conditions where the permeability barrier of the microsomal vesicles was maintained intact, did not inactivate PDI significantly or affect its latency. PDI was very readily solubilized from microsomal vesicles by low concentrations of detergents, which removed only a fraction of the total microsomal protein. In all these respects, PDI resembled nucleoside diphosphatase, a marker peripheral protein of the luminal surface of the endoplasmic reticulum, and differed from NADPH: cytochrome c reductase, a marker integral protein exposed at the cytoplasmic surface of the membrane. The data are compatible with a model in which PDI is loosely associated with the luminal surface of the endoplasmic reticulum, a location consistent with the proposed physiological role of the enzyme as catalyst of formation of native disulphide bonds in nascent and newly synthesized secretory proteins.  相似文献   

8.
Reversible conversion between the native and scrambled proteins can be applied to analyze the denaturation curve of a disulfide-containing protein. In the case of RNase A, scrambled species could not be well separated from the native species by HPLC to permit precise quantitative analysis of the extent of denaturation. Methods are developed here to overcome this problem. The methods exploit the difference of conformational stability between the native and scrambled RNase A. When a sample of partially denatured RNase A was placed under mild reducing conditions (0.2-1 mM dithiothreitol for 10 min), the disulfide bonds of the native RNase A remain intact, whereas those of scrambled isomers become fully reduced. The native and fully reduced species of RNase A can be completely separated by HPLC. Alternatively, a mixture of partially denatured RNase A can be treated with mild concentration of proteolytic enzymes (trypsin or thermolysin). In this approach, scrambled isomers of RNase A were totally fragmented and readily separated from the native RNase A. These methods allow analysis and construction of the denaturation curves of RNase A in the presence of urea, GdmCl and GdmSCN.  相似文献   

9.
Conclusions The use of diethylpyrocarbonate to inhibit endogenous ribonuclease in sheep pancreas allows the detection of protein-disulphide-isomerase activity in homogenates, at specific activities of up to 4 units/g. This is higher than the specific activity in sheep liver homogenates (about 2 units/g) or in homogenates of other sheep tissues (16). It is thus evident that high levels of protein-disulphide-isomerase activity are present in sheep pancreas. This is consistent both with the postulated general role of protein disulphide-isomerase in protein biosynthesis (10,11) and with the in vitro action of the enzyme on its conventional substrate scrambled ribonuclease, since pancreas is the major site of ribonuclease synthesis.  相似文献   

10.
Protein disulphide-isomerase (PDI) activity, and the level of immunodetectable PDI protein, were monitored in splenic lymphocytes and in BCL1 cells during culture in the presence of various activating factors. Bacterial lipopolysaccharide stimulated induction of PDI in splenic B cells and BCL1 cells. The time-course and specificity of induction indicated that the increase in expression of PDI is closely coupled to the final stages of B cell differentiation into antibody-producing plasma cells. The system will prove valuable in studies on the control of expression of PDI.  相似文献   

11.
The hydrodynamic properties of the C-reactive protein in solution (pH 6.8) were studied using quasi-elastic light scattering and size-exclusion liquid chromatography. It was shown that the solution containing the C-reactive protein represents a polydisperse system. The values of the translation diffusion coefficient and the apparent molecular weight of the C-reactive protein in solution at pH 6.8 were determined. The values of the translation diffusion coefficient, molecular weight and the hydration radius obtained suggest that the native pentameric C-reactive protein is the major form of the protein in solution at pH 6.8.  相似文献   

12.
We have studied the time sequence degradation of native insulin by insulin protease from human fibroblast using multiple steps involving purification of the products by high performance liquid chromatography, determination of peak composition by amino acid sequence analysis, and confirmation of structure by mass spectrometry and thus elucidated the sites of cleavage of insulin by human insulin protease. We observed that as early as 0.5 min of incubation, three major new peptide peaks, intact insulin, and four smaller peptide peaks can be detected. The major peptides are portions of the insulin molecule, with the amino ends of the A and B chains or the carboxyl ends of the A and B chains still connected by disulfide bonds. Peptide peak I is A1-13-B1-9. Peptide peak II is A1-14-B1-9. Peptide peak III is A14-21-B14-30. The smaller peptide peaks are A14-21-B17-30, A15-21-B14-30, A15-21-B10-30, and A14-21-B10-30. The major peptide bond cleavage sites therefore consist of A13-14, A14-15, B9-10, B13-14, and B10-17. With longer incubation times, peptide peak II appears to lose the A14 tyrosine to form peptide peak I. This peptide I, which is the amino end of the A and B chains, is not further degraded even after 1.5 h of incubation. With longer incubation times, the peptides containing the carboxyl ends of the A and B chains are further degraded to form products from cleavage at the A18-19, B14-15, B25-26, and a small amount of A19-20, B10-11, and B24-25 cleavage and the emergence of 2-5-amino acid peptide chains, tyrosine, alanine, histidine, and leucine-tyrosine. We conclude, based on the three-dimensional structure of insulin, that human insulin protease recognizes the alpha-helical regions around leucine-tyrosine bonds and that final degradation steps to small peptides do not require lysosomal involvement.  相似文献   

13.
The protein disulphide-bond isomerization activity of highly active homogeneous protein disulphide-isomerase (measured by re-activation of 'scrambled' ribonuclease) is enhanced by EDTA and by phosphate buffers. As shown for previous less-active preparations, the enzyme has a narrow pH optimum around pH 7.8 and requires the presence of either a dithiol or a thiol. The dithiol dithiothreitol is effective at concentrations 100-fold lower than the monothiols reduced glutathione and cysteamine. The enzyme follows Michaelis-Menten kinetics with respect to these substrates; Km values are 4,620 and 380 microM respectively. The enzyme shows apparent inhibition by high concentrations of thiol or dithiol compounds (greater than 10 X Km), but the effect is mainly on the extent of reaction, not the initial rate. This is interpreted as indicating the formation of significant amounts of reduced ribonuclease in these more reducing conditions. The purified enzyme will also catalyse net reduction of insulin disulphide bonds by reduced glutathione (i.e. it has thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase activity), but this requires considerably higher concentrations of enzyme and reduced glutathione than does the disulphide-isomerization activity. The Km for reduced glutathione in this reaction is an order of magnitude greater than that for the disulphide-isomerization activity, and the turnover number is considerably lower than that of other enzymes that can catalyse thiol-disulphide oxidoreduction. Conventional two-substrate steady-state analysis of the thiol:protein-disulphide oxidoreductase activity indicates that it follows a ternary-complex mechanism. The protein disulphide-isomerase and thiol:protein-disulphide oxidoreductase activities co-purify quantitatively through the final stages of purification, implying that a single protein species is responsible for both activities. It is concluded that previous preparations, from various sources, that have been referred to as protein disulphide-isomerase, disulphide-interchange enzyme, thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase are identical or homologous proteins. The assay, nomenclature and physiological role of this enzyme are discussed.  相似文献   

14.
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.  相似文献   

15.
Refolding studies show that native insulin can be reformed from A and B chains only. This suggests that the A and B chains contain the necessary structural information and that the C peptide is not required for this process.  相似文献   

16.
Protein disulphide-isomerase of chick-embryo tendon.   总被引:1,自引:1,他引:0       下载免费PDF全文
Protein disulphide-isomerase can be partially purified from the high-speed-supernatant fraction of extensively disrupted chick-embryo tendon tissue. The catalytic properties of the preparation resemble those of the enzyme from mammalian liver. Gel electrophoresis and isoelectric focusing show the enzyme to be very acidic, with pI 4.4 +/- 0.3. Gel filtration indicates an Mr for the active enzyme of 140 000. The enzyme can be partially purified by preparative gel filtration or isoelectric focusing, but its limited stability has prevented purification to homogeneity; active fractions from both gel filtration and isoelectric focusing show two major polypeptide components by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The major polypeptides present in partially purified preparations have Mr 45 000 and 55 000; the latter band co-distributes with the enzyme activity in fractionations by both gel filtration and isoelectric focusing. The subcellular location of the enzyme cannot be established from work on homogenates of whole tissue, which are extensively disrupted. In homogenates from isolated tendon cells, the enzyme is located in a vesicle fraction that is excluded from Sepharose 2B but is of low density and can only be sedimented at very high speeds. This fraction is identified as deriving from the endoplasmic reticulum on the grounds of marker-enzyme studies and electron microscopy.  相似文献   

17.
18.
19.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

20.
Juvenile hormone binding protein (JHBP) acts as a shuttle, carrying one of the most crucial hormones for insect development to target tissues. We have found that although the JHBP molecule does not contain tryptophan residues, it exhibits a weak fluorescence maximum near 420nm upon excitation at 315nm. Gel filtration experiments performed in denaturing conditions and ESI-MS analyses excluded the possibility that some low molecular ligand was bound to the protein molecules. Further UV and CD spectroscopy studies, as well as immunoblotting, showed that the unusual JHBP optical properties were due to dityrosine intramolecular cross-linking. These bridges were detected both in native and recombinant protein molecules. We believe that in Galleria mellonella hemolymph the DT generation occurs via ROS-mediated oxidation leading to the formation of cross-linked JHBP monomers. MS analyses of peptides generated after JHBP proteolysis indicated, that the dityrosine bridge occurs between the Y128 and Y130 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号