首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

2.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

3.
Activation of particulate adenylate cyclase and detergent-soluble (lubrol PX) adenylate cyclase occurred when the enzyme was preincubated at 37 degrees in the presence of 5 mM NaF and 5mM MgSO4. Under these conditions the specific activity of the enzyme increased more than twofold in 8 to 12 min. Activation also occurred in the presence of 5 mM NaF alone, but the rate of activation was slower. Under these conditions, activation was inhibited by 1mM EDTA, but this inhibition was prevented byMg++. No activation was observed at 0 degrees or in the absence of F. After repeated extraction with detergent, particulate adenylate cyclase was not stimulated by mM NaF, and activation by preincubation with Mg++ and F- was significantly reduced. Activation was restored by recombination of this particulate fraction with the initial detergent extract. This activating effect appeared to be mediated by one or more proteins present in the detergent extract.  相似文献   

4.
Activation of adenylate cyclase in Acanthamoeba palestinensis   总被引:1,自引:0,他引:1  
Preincubation of Acanthamoeba palestinensis homogenates in 0.25M sucrose-TM (2mM MgSO4 and 5mM Tris-HCl, pH 7.4) at 0 degree C for increasing periods of time up to 3 h, leads to a progressive increase in the activity of adenylated cyclase. In contrast, preincubation of isolated membrane fractions enriched in enzyme activity in the same medium results in no activation. However, preincubation of membrane fractions in medium containing a high density of sugars (sucrose, glucose or fructose) mimics the activation obtained with homogenates. The high density sugar activation is time and temperature dependent, and reversible upon return to a low density medium. The high osmotic pressure of the sugars utilized may be a factor, since high concentrations of the sucrose polymer, Ficoll, which has low osmotic activity, causes not activation. Soluble activators, protein synthesis and changes in cyclic nucleotide phosphodiesterase activity were all eliminated as possible effectors of the apparent activation of adenylate cyclase. In contrast to mammalian adenylate cyclase, the endoplasmic reticulum localized enzyme of Acanthamoeba is inhibited by NaF and is unaffected by GTP, adenosine, epinephrine, prostaglandin E1, propranolol, and meclofenamic acid. These data indicate that the adenylate cyclase of Acanthamoeba is structurally different from that of most mammalian cells.  相似文献   

5.
1. Adenylate cyclase of the washed 600g sediment of bovine corpus-luteum homogenate is stimulated by p[NH]ppG (guanosine 5'-[beta,gamma-imido]triphosphate), the imido analogue of GTP, and to a lesser extent by GTP itself. Activation by p[NH]ppG is not reversed by extensive washing before assay, but can, however, be reversed by NaF. 2. Both p[NH]ppG and NaF stabilize the enzyme during incubation at 37 degrees C. NaF also causes an irreversible activation, but only of part of the potentially NaF-activatable adenylate cyclase; there are possibly two components of the adenylate cyclase system, which can be distinguished by their response to NaF. 3. Solubilization of the adenylate cyclase activity in the 600g sediment, by using the non-ionic detergent Lubrol-PX, gave variable yields. A relationship between the magnitude of NaF stimulation of the 600g-sediment enzyme and the yield of soluble activity derived from the sediment was recognized. The results suggest that the pre-existing state of the enzyme complex in vivo is reflected by the response in vitro to NaF and may determine the success with which activity can be solubilized. 4. The absolute yields of soluble activity could be increased by p[NH]ppG preactivation of the 600g sediment. During the development of the maximally active state by preincubation with p[NH]ppG the enzyme passes through a stage in which Lubrol solubilization is increased, but the maximally active state is itself less amenable to solubilization. p[NH]ppG activation causes the appearance of NaF-inhibited states, which appear to be preferentially solubilized by Lubrol-PX.  相似文献   

6.
The specific activity of adenylate cyclase in membrane preparations obtained from Rous Sarcoma virus-transformed chicken embryo fibroblasts is two to four times lower than that found in untransformed membranes. Adenylate cyclase was solubilized from normal and transformed membranes in order to evaluate the influence of the membrane phase on the properties of the enzyme. Adenylate cyclase in normal and transformed membranes differed in specific activity, V for ATP, activation entropies, sensitivity to Ca2+, and stability at 37 degrees C. Solubilization with Brij 96 abolished or greatly reduced these differences. These data suggest that the differences between adenylate cyclase activities in normal and transformed chicken embryo fibroblasts are due either to differential modulation of enzyme activity by an effector which requires intact membranes for its effects, or indirect effects due to altered membrane properties.  相似文献   

7.
Cell-free desensitization of the pigeon erythrocyte adenylate cyclase-coupled beta-adrenoreceptor system requires soluble cellular factors. Desensitization is observed when a mixture of cell membranes and the cytosol fraction are incubated with isoproterenol or cAMP and IBMX for 20 min at 37 degrees C. Mg2+ and ATP are also required for cell-free desensitization. When adenylate cyclase is maximally stimulated by isoproterenol or GTP-gamma-S, the decrement of activity is 45-50% and 20-25%, respectively. Adenylate cyclase desensitization may be also produced by preincubation of plasma membranes with the catalytic component of cAMP-dependent protein kinase. Cell-free desensitization is associated with functional uncoupling of the beta-receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide-sensitive complex with the agonist and by the increase of the lag-phase of adenylate cyclase activation by isoproterenol and GTP-gamma-S. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be the phosphorylation of a component(s) of the beta-receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

8.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

9.
The thermal inactivation of adenylate cyclase was investigated in human lymphocytes and in the N-protein deficient cyc-S49 mouse lymphoma cell line. The enzyme is rapidly inactivated at 37C with a t12 of 5.5 and 4.5 min respectively in human and cyc? membranes. Thermal inactivation is prevented by at least two mechanisms. The first mechanism involves ATP which stabilizes adenylate cyclase in a concentration dependent manner similar to the Km of ATP for cAMP formation. However, the inhibition of inactivation does not require Mg++ while the enzyme catalysis of ATP to cAMP does. The second mechanism involves substances which activate the enzyme. The human lymphocyte enzyme is equally stabilized by either NaF, GppNHp, or forskolkin. In contrast, the cyc? enzyme is fully stabilized by forskolin but only partially stabilized by NaF. When human erythrocyte N-protein extract is added to cyc? membranes, NaF fully stabilizes the enzyme. These data suggest that an activated N-protein is instrumental in stabilizing adenylate cyclase and that there is some N-protein component in cyc? membranes through which NaF may be exerting its stabilizing action.  相似文献   

10.
Human platelet adenylate cyclase is stimulated by prostaglandin E1 (PGE1) and is inhibited by epinephrine via alpha-adrenoceptors. Both agonists, epinephrine more than PGE1, increase the activity of a low Km GTPase in platelet membranes. Pretreatment of intact platelets or platelet membranes with the sulfhydryl reagent, N-ethylmaleimide (NEM), abolished the inhibition of the adenylate cyclase and the concomitant stimulation of the GTPase by epinephrine. In contrast, stimulation of the adenylate cyclase by PGE1 was not affected or even increased by NEM pretreatment; only at high NEM concentrations were both basal and PGE1-stimulated activities decreased. Similarly, the PGE1-induced activation of the low Km GTPase was not or was only partially reduced by NEM. Adenylate cyclase activation by stable GTP analogs, NaF, and cholera toxin was also not decreased by NEM pretreatment. Exposure of intact platelets to NEM did not reduce alpha-adrenoceptor number and affinities for agonists and antagonists, as determined by [3H]yohimbine binding in platelet particles. The data indicate that NEM uncouples alpha-adrenoceptor-mediated inhibition of platelet adenylate cyclase, leaving the receptor recognition site and the adenylate cyclase itself relatively intact. Although the effect of NEM may be based on a reaction with the alpha-adrenoceptor site interacting with a coupling component, the selective loss of the adenylate cyclase inhibition together with an even increased stimulation of the enzyme by PGE1 suggests that there are two at least partially distinct regulatory sites involved in opposing hormonal regulations of adenylate cyclase activity, with that involved in hormonal inhibition being highly susceptible to inactivation by NEM.  相似文献   

11.
G Rimon  E Hanski  A Levitzki 《Biochemistry》1980,19(19):4451-4460
The individual temperature dependencies of the process which control the activity of turkey erythrocyte adenylate cyclase have been determined. The temperature dependence of the fraction of activable cyclase units experiences a thermal transition at 24 degrees C for all three modes of enzyme activation: l-epinephrine, adenosine, and NaF. This thermal transition probably reflects the phase transition in the inner monolayer of the membrane which influences the behavior of the GTP regulatory unit which is involved in all three modes of enzyme activation. The "rate constant" of enzyme activation by adenosine reflects two thermal transitions, at 24 and at 35 degrees C; the apparent rate constant of cyclase activation by NaF activation experiences a transition only at 24 degrees C whereas the rate constant of the beta-receptor-bound agonist decreases monotonously with no "breaks" on the Arrhenium plot. Following the temperature dependence of the fluorescence intensity of dansylphosphatidylethanolamine embedded in both sides of the membrane and exclusively in the outer monolayer, one can assign the thermal transition of 24 degrees C to the inner monolayer and the other two transitions to the outer monolayer (10 and 35 degrees C). We interpret these results as follows. (a) The monomolecular rate constant characterizing the activation of cyclase by the precoupled adenosine receptor experiences both the transition at 24 and 35 degrees C, indicating that the latter may span the bilayer. (b) The bata receptor activates the cyclase units only in fluid areas since it can diffuse exclusively in the fluid areas of the membrane and is unable to interact with cyclase units in "frozen" areas. the linear dependence of the logarithm of the rate constant on 1/T for the bata receptor reflects the change of membrane fluidity as a function of temperature.  相似文献   

12.
1. Renal tubular membranes from rat kidneys were prepared, and adenylate cyclase activity was measured under basal conditions, after stimulation by NaF or salmon calcitonin. Apparent Km value of the enzyme for hormone-linked receptor was close to 1 x 10(-8) M. 2. The system was sensitive to temperature and pH. pH was found to act both on affinity for salmon calcitonin-linked receptor and maximum stimulation, suggesting an effect of pH on hormone-receptor binding and on a subsequent step. 3. KCl was without effect areas whereas CoCl and CaCl2 above 100 muM and MnCl2 above 1 muM inhibited F- -and salmon calcitonin-sensitive adenylate cyclase activities. The Ca2+ inhibition of the response reflected a fall in maximum stimulation and not a loss of affinity of salmon calcitonin-linked receptor for the enzyme. 4. The measurement of salmon calcitonin-sensitive adenylate cyclase activity as a function of ATP concentration showed that the hormone increases the maximum velocity of the adenylate cyclase. GTP, ITP and XTP at 200 muM did not modify basal, salmon calcitonin- and parathyroid hormone-sensitive adenylate cyclase activities. 5. Basal, salmon calcitonin- and F- -sensitive adenylate cyclase activities decreased at Mg2+ concentrations below 10 mM. High concentrations of Mg2+ (100 mM) led to an inhibition of the F- -stimulated enzyme. 6. Salmon calcitonin-linked receptor had a greater affinity for adenylate cyclase than human or porcine calcitonin-linked receptors. There was no additive effect of these three calcitonin peptides whereas parathyroid hormone added to salmon calcitonin increased adenylate cyclase activity, thus showing that both hormones bound to different membrane receptors. Human calcitonin fragments had no effect on adenylate cyclase activity. 7. Salmon calcitonin-stimulated adenylate cyclase activity decreased with the preincubation time. This was due to progressive degradation of the hormone and not to the rate of binding to membrane receptors.  相似文献   

13.
In crude membrane fractions of rat pancreatic islets and of RIN-A2-cells, forskolin and NaF stimulated adenylate cyclase activity. Basal and stimulated enzyme activity was approximately 3 to 6 fold higher in membranes of RIN-A2-cells than in membranes of islet cells. In RIN-A2-cells GppNHp and NEM inhibited forskolin-stimulated enzyme activity. The inhibitory effect of GppNHp could be reduced by NEM. It is suggested that the adenylate cyclase system of RIN-A2-cells contains inhibitory and stimulatory N-proteins and that there are critical thiols related to Ni, Ns and/or the catalytic unit. Thus, membrane fractions of RIN-A2-cells may be an appropriate model for studies on the adenylate cyclase system of insulin-producing cells.  相似文献   

14.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

15.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

16.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Human adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) has been studied in preparations of fat cell membranes ("ghosts"). As reported earlier, under ordinary assay conditions (1.0 mM ATP, 5 mM Mg2+, 30 degrees C, 10 min incubation) the enzyme was activated 6-fold by epinephrine in the presence of the GTP analog, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P] (Cooper, B. et al. (1975) J. Clin. Invest. 56, 1350-1353). Basal activity was highest during the first 2 min of incubation then slowed and was linear for at least the next 18 min. Epinephrine, added alone, was often without effect. but sometimes maintained the initial high rate of basal activity. GMP-P(NH)P alone produced inhibition ("lag") of basal enzyme early in the incubation periods. Augmentation of epinephrine effect by GMP-P(NH)P, which also proceeded after a brief (2 min) lag period, was noted over a wide range of substrate (ATP) concentrations. GTP inhibited basal levels of the enzyme by about 50%. GTP also allowed expression of an epinephrine effect, but only in the sense that the hormone abolished the inhibition by GTP. Occasionally a slight stimulatory effect on epinephrine action was seen with GTP. At high Mg2+ concentration (greater than 10 mM) or elevated temperatures (greater than 30 degrees C) GMP-P(NH)P alone activated the enzyme. Maximal activity of human fat cell adenylate cyclase was seen at 50 mM Mg2+, 1.0 mM ATP, pH 8.2, and 37 degrees C in the presence of 10(-4) M GMP-P(NH)P; under these conditions addition of epinephrine did not further enhance activity. Human fat cell adenylate cyclase of adults was insensitive to ACTH and glucagon even in the presence of GMP-P(NH)P.  相似文献   

18.
The adenosine analogue 9-(Tetrahydro-2-furyl)adenine, SQ 22536, inhibited adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity of crude membrane preparations from catfish (Ictalurus melas) and rat isolated hepatocytes in a non-competitive manner. The IC50s were reduced in the presence of NaF. SQ 22536 reduced the activity of adenylate cyclase also in the presence of increasing concentrations of GTP, as well as Mg++ and Mn++. In the presence of catecholamines (epinephrine, norepinephrine, isoproterenol, phenylephrine) SQ 22536 reduced their activating effect on adenylate cyclase in both catfish and rat membranes. SQ 22536 also inhibited the effect of glucagon (0.1 microM) on rat membrane cyclase activity.  相似文献   

19.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

20.
Lutropin-sensitive adenylate cyclase ((EC 4.6.1.1) ATP pyrophosphate-lyase (cyclizing)) in purified rat ovarian plasma membranes is stimulated by lutropin 2- to 3-fold in the absence, but 15- to 20-fold in the presence of GTP or p(NH)ppG. Following 10 to 15 min of incubation at 30 degrees C in the presence of lutropin, enzyme activity declined (50%) in the presence of GTP but not in the presence of p(NH)ppG. This desensitizing process induced by lutropin and GTP is not seen if NaF is also included in the incubation medium. The desensitized state of the enzyme persists at 4 degrees C in membranes washed free of the incubation medium. In this state the enzyme is characterized by: (i) a reduced response to lutropin even in the presence of p(NH)ppG; (ii) its response to NaF is not different from that of untreated enzyme; (iii) it reconverts to a fully responsive state following incubation (10 min, 30 degrees C) in GTP-free medium, a process accelerated by p(NH)ppG; (iv) the receptor content as well as the stability of the receptor.hormone complex does not differ from that of untreated fully responsive enzyme. It is proposed that desensitization results from a GTP-dependent, hormone-stimulated reaction that leads to impaired coupling of the enzyme system. The desensitized state induced is transient and may revert to a responsive one under specified conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号