首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystems of rice paddies are good sources of new strains of heterocyst-forming cyanobacteria that can be used in biotechnological systems for production of photohydrogen. The morphological and physiological properties of two novel epiphytic strains of cyanobacteria, Anabaena sp. 182 and Anabaena sp. 281, were studied. DNA typing of these strains based on PCR amplification of hydrogenase-encoding genes and DNA analysis using RAPD and Rep primers was carried out. The properties of the genome of strain Anabaena sp. 281 differed considerably from those of two reference strains (Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120) with sequenced genomes, whereas strain Anabaena sp. 182 was found to be a close relative of A. variabilis ATCC 29413. Due to a number of physiological and biochemical advantages, Anabaena sp. 182 may be considered a new promising model for molecular and genetic engineering studies aimed at the development of H2 producers.  相似文献   

2.
3.
4.
5.
The effect of temperature and oxygen on nitrogenase activity in two heterocystous cyanobacteria, Anabaena variabilis Kütz. ATCC29413 and Nostoc sp. PCC7120, was investigated. The cyanobacteria were grown under a 12:12 light:dark (L:D) cycle at 27°C and were subsequently exposed to different temperatures (27, 36, 39, and 42°C) at different steady‐state O2 concentrations (20, 10, 5, 0%). Light response curves of nitrogenase activity were recorded under each of these conditions using an online acetylene reduction assay combined with a sensitive laser photoacoustic ethylene detection method. The light response curves were fitted with the rectangular hyperbola model from which the model parameters Nm, Nd, and α were derived. In both strains, nitrogenase activity (Ntot = Nm + Nd) was the highest at 39°C–42°C and at 0% O2. The ratio Ntot/Nd was 4.1 and 3.1 for Anabaena and Nostoc, respectively, indicating that respectively 25% and 33% of nitrogenase activity was supported by respiration (Nd). Ntot/Nd increased with decreasing O2 concentration and with increasing temperature. Hence, each of these factors caused a relative increase in the light‐driven nitrogenase activity (Nm). These results demonstrate that photosynthesis and respiration both contribute to nitrogenase activity in Anabaena and Nostoc and that their individual contributions depend on both O2 concentration and temperature as the latter may dynamically alter the flux of O2 into the heterocyst.  相似文献   

6.
Summary It has been suggested that a calcium-dependent intracellular protease of the cyanobacterium, Anabaena sp., participates in the differentiation of heterocysts, cells that are specialized for fixation of N2. Clones of the structural gene (designated prcA) for this protease from Anabaena variabilis strain ATCC 29413 and Anabaena sp. strain PCC 7120 were identified via their expression in Escherichia coli. The prcA gene from A. variabilis was sequenced. The genes of both strains, mutated by insertion of a drug resistance cassette, were returned to these same strains of Anabaena on suicide plasmids. The method of sacB-mediated positive selection for double recombinants was used to achieve replacement of the wild-type prcA genes by the mutated forms. The resulting mutants, which lacked Ca2+-dependent protease activity, were not impaired in heterocyst formation and grew on N2 as sole nitrogen source.  相似文献   

7.
Complete genome sequencing was performed for Anabaena variabilis ATCC 29413 from the collection of the Chair of Genetics, Department of Biology, Moscow State University, Russia. In addition to known plasmids A, B, and C, a new circular low-copy plasmid was detected and named D. It was also sequenced completely and found to have 27051 bp. The plasmid contained the parA and parB genes of the partition system, two genes that encode replication proteins, a gene for site-specific recombinase, a type-I restriction-modification system, and several genes with unknown functions. Analysis by PCR revealed the presence of plasmid D in two epiphytic strains from Vietnam, i.e., Anabaena sp. 182 and Anabaena sp. 281, as well as in Anabaena sp. V5 and A. azollae (Newton’s isolate).  相似文献   

8.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

9.
J. D. Ownby 《Planta》1977,136(3):277-279
Heterocyst development in ammonia-grown cultures of Anabaena variabilis and Anabaena 7120 was fully induced by the amino-acid analog methionine sulfoximine (MSO) at concentrations of 0.5–1.0 M. Glutamine, glutamate, aspartate, and alanine at 0.5 mM blocked the induction of heterocysts by MSO in A. variabilis. With Anabaena 7120, glutamine and glutamate were fully effective and alanine partially effective in preventing MSO-induced heterocyst formation. In MSO-treated algae, glutamine synthetase activity was reduced to less than 15% of control values within 4–6 h. Inactivation of the enzyme was prevented by all four amino acids tested.  相似文献   

10.
The relationship between the requirement for boron and the form of N supplied in nutrient media to cyanobacterium Anabaena sp. PCC 7119 was investigated. When cells were grown in a medium which contained nitrate or ammonium-N, boron deficiency in the nutrient media did not inhibit growth or change cell composition. However, when cells were dependent on N2 fixation, the lack of boron inhibited growth (i.e. growth ceased after 96 hours under these conditions). Additionally, boron-deficient cells showed a significant decrease in their content of phycobiliproteins and chlorophyll and accumulated carbohydrates within 24 hours of removing boron from the nutrient media. Inhibition of photosynthetic O2 evolution accompanied the decrease in photosynthetic pigments. Boron deficiency symptoms were relieved when either boron or combined N was added to boron-deficient cultures. The degree of recovery depended upon the age of the cultures. Assays of nitrogenase activity showed that, after 2 hours of growth, nitrogenase activity of boron-deficient cells was inhibited by 40%. After 24 hours a total inactivation of nitrogenase activity was observed in boron-deficient cells. These results strongly suggest an involvement of boron in N2 fixation in cyanobacteria.  相似文献   

11.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

12.
An on‐line, laser photo‐acoustic, trace gas detection system in combination with a stepper motor‐controlled monochromator was used to record semicontinuous light action spectra of nitrogenase activity in heterocystous cyanobacteria. Action spectra were made of cultures of Nodularia spumigena Mertens ex Bornet & Flahault, Aphanizomenon flos‐aquae Ralfs ex Bornet & Flahault, and Anabaena sp. and from field samples of a cyanobacterial bloom in the Baltic Sea. Nitrogenase activity was stimulated by monochromatic light coinciding the red and blue peaks of chl a, the phycobiliproteins phycocyanin (allophycocyanin) and phycoerythrin, and several carotenoids. Because nitrogenase is confined to the heterocyst, it was concluded that all photopigments must have been present in these cells, were involved in light harvesting and photosynthesis, and supplied the energy for N2 fixation. The species investigated showed marked differences in their nitrogenase action spectra, which might be related to their specific niches and to their success in cyanobacterial blooms. Moreover, light action spectra of nitrogenase activity shifted during the day, probably as the result of changes in the phycobiliprotein content of the heterocyst relative to chl a. Action spectra of nitrogenase and changes in pigment composition are essential for the understanding of the competitive abilities of species and for the estimation of N2 fixation by a bloom of heterocystous cyanobacteria.  相似文献   

13.
Characterization of HetR protein turnover in Anabaena sp. PCC 7120   总被引:2,自引:0,他引:2  
The hetR gene plays an important role in heterocyst development and pattern formation in heterocystous cyanobacteria. The hetR gene from Anabaena sp. PCC 7120 was overexpressed in Escherichia coli. Antibodies raised against the recombinant HetR protein (rHetR) were used to characterize metabolism of the HetR of Anabaena sp. PCC 7120 in vivo. HetR was present at a low level when Anabaena sp. PCC 7120 was grown in the presence of combined nitrogen. Shifting from nitrogen repletion conditions to nitrogen depletion conditions led to a two fold increase of HetR in total cell extracts, and most of HetR was located in heterocysts. The amount of HetR in total cellular extracts increased rapidly after shifting to nitrogen depletion conditions and reached a maximum level 3 h after the shift. Isoelectrofocusing electrophoresis revealed that the native HetR had a more acidic isoelectric point than did rHetR. After combined nitrogen was added to the nitrogen-depleted cultures, the degradation of HetR depended on culture conditions: before heterocysts were fully developed, HetR was rapidly degraded; after heterocysts were fully developed, HetR was degraded much more slowly. The distribution of HetR in other species of cyanobacteria was also studied. Received: 24 June 1997 / Accepted: 5 December 1997  相似文献   

14.
Summary Blending Anabaena cylindrica cultures results in a loss of nitrogenase activity which is correlated with the breakage of the filaments at the junctions between heterocysts and vegetative cells. Oxygen inhibition of nitrogen fixation was significant only above atmospheric concentrations. Nitrogen-fixation activities in the dark were up to 50% of those observed in the light and were dependent on oxygen (10 to 20% was optimal). Nitrogenase activity was lost in about 3 h when cells were incubated aerobically in the dark. Re-exposure to light resulted in recovery of nitrogenase activity within 2 h. Blending, oxygen, or dark pre-incubation had similar effects upon cultures grown under air or nitrogen and did not inhibit light-dependent CO2 fixation. We conclude that heterocysts are the sites of nitrogenase activity and propose a model for nitrogen fixation by Anabaena cylindrica.  相似文献   

15.
We present an improved method for genomic DNA extraction from cyanobacteria by updating the earlier method from our group (Sinha et al. 2001) that does not require lysozyme treatment or sonication to lyse the cells. This method use lysis buffer to lyse the cells and also skips the initial treatments to remove the exopolysaccharides or to break the clumps. To test the efficacy of the method DNA was extracted from the freshwater cyanobacteria Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803, Synechococcus sp. PCC 6301 and Rivularia sp. HKAR-4 (Accession number: FJ939128). The spectrophotometric and gel electrophoresis analysis revealed high yield and high quality of genomic DNA extracted by this method. Furthermore, the RAPD resulted in the amplification of unidentified genomic regions of various lengths; however, rDNA amplification gave only one band of 1.5 kb in all studied cyanobacteria. Thymine dimer detection study revealed that thymine dimers are induced only by UV-B radiation in A. variabilis PCC 7937 and there is no effect of PAR and UV-A on its genome. Collectively, all these findings put forward the applicability of this method in different studies and purposes.  相似文献   

16.
17.
A comparative study of growth and nitrate metabolism of Anabaena flos-aquae (Lyng.) Bréb. and Scenedesmus bijugatus var. seriatus Chodat investigated possible mechanisms for the iron-stimulated increases in growth specific for blue-green algae in mixed algal communities. Algae were separately grown in an morganic medium with varying concentrations of iron and nitrate to determine the effects on each organism. Iron was found to be a limiting nutrient for cultures of both Anabaena and Scenedesmus as determined by chlorophyll a concentrations and cell enumeration. Both iron and nitrate stimulated the specific activity of nitrate reductase, nitrite reductase, and glutamine synthetase in Anabaena. Iron enrichment did not increase the activity of the enzymes in Scenedesmus, but inhibited the activity of nitrate reductase and glutamine synthetase. The stimulation of growth by iron in cells grown under iron limiting conditions was associated with increased nitrate metabolism in Anabaena but not in Scenedesmus.  相似文献   

18.
Summary Anabaena variabilis ATCC 29413 contains two cryptic plasmids. Clones of the smaller (41 kb) plasmid, designated pRDS1, in cosmid vectors were used to construct a physical map. A clone bank of pRDS1 constructed by ligating fragments from aXhoII digest of a pRDS1 cosmid clone into a mobilizable plasmid was used to locate an origin of replication of pRDS1. Because we were unable to cureA. variabilis of pRDS1, the clone bank was transferred by conjugation to another strain ofAnabaena sp., strain M-131. A 5.3 kb fragment of pRDS1 contained all of the sequences necessary for replication inAnabaena sp. strain M-131 as judged by the ability to rescue the hybrid vector from exconjugants in unchanged form after many generations. Hybrid plasmids derived from pRDS1, one bearing genes for luciferase, were also transferred by conjugation toA. variabilis, where they appeared to recombine with pRDS1.  相似文献   

19.
Earth's atmospheric composition has changed significantly over geologic time. Many redox active atmospheric constituents have left evidence of their presence, while inert constituents such as dinitrogen gas (N2) are more elusive. In this study, we examine two potential biological indicators of atmospheric N2: the morphological and isotopic signatures of heterocystous cyanobacteria. Biological nitrogen fixation constitutes the primary source of fixed nitrogen to the global biosphere and is catalyzed by the oxygen‐sensitive enzyme nitrogenase. To protect this enzyme, some filamentous cyanobacteria restrict nitrogen fixation to microoxic cells (heterocysts) while carrying out oxygenic photosynthesis in vegetative cells. Heterocysts terminally differentiate in a pattern that is maintained as the filaments grow, and nitrogen fixation imparts a measurable isotope effect, creating two biosignatures that have previously been interrogated under modern N2 partial pressure (pN2) conditions. Here, we examine the effect of variable pN2 on these biosignatures for two species of the filamentous cyanobacterium Anabaena. We provide the first in vivo estimate of the intrinsic isotope fractionation factor of Mo‐nitrogenase (εfix = ?2.71 ± 0.09‰) and show that, with decreasing pN2, the net nitrogen isotope fractionation decreases for both species, while the heterocyst spacing decreases for Anabaena cylindrica and remains unchanged for Anabaena variabilis. These results are consistent with the nitrogen fixation mechanisms available in the two species. Application of these quantifiable effects to the geologic record may lead to new paleobarometric measurements for pN2, ultimately contributing to a better understanding of Earth's atmospheric evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号