首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential involvement of gangliosides in the adherence and neurite extension of human neuroblastoma cells (Platt and La-N1) was investigated on tissue culture substrata coated with the ganglioside GM1-binding protein, cholera toxin B (CTB) subunit, for comparison with similar processes on plasma fibronectin (pFN)-coated substrata. Cells attached with reduced efficiency on CTB substrata as compared with pFN substrata and required a much longer time to form neurite processes for a small percentage of cells on CTB. The specificity of these processes for GM1 binding was tested in a variety of ways. Supplementation of the cells with exogenous GM1, but not GD1a, identified a larger population of cells adherent on CTB (comparable to pFN-adherent cells) and dramatically increased the proportion of cells capable of forming neurites without reducing the time requirement. In ultrastructural studies using the scanning electron microscope (SEM) and immunofluorescence (IF) analyses to discriminate microtubule distributions, neurites of GM1-supplemented cells on CTB were virtually identical with pFN-adherent neurites, whereas unsupplemented cells on CTB generated processes with fine-structural differences. Treatment of cells during the GM1 supplementation period with cycloheximide completely abolished the ability of cells to generate neurites on CTB and decreased the adhesive capacity of cells as well; a similar treatment of cells had no adverse effect on adherence or neurite extension on pFN. The importance of one or more proteins in GM1-dependent processes was further confirmed by demonstrating the trypsin sensitivity of a cell surface component(s) required to achieve maximal attachment on CTB; in contrast, adherence and neurite extension on pFN were much more resistant to this treatment process. Therefore, these experiments demonstrate (a) that certain cell surface gangliosides are capable of mediating adherence and neurite outgrowth of human neuroblastoma cells on a suitable ganglioside-binding substratum; (b) this ganglioside dependence is cooperative with one or more cell surface proteins which can now be analysed. These results are discussed in light of the identification in ref. [16] (Exp cell res 169 (1987) 311) of a second ‘cell-binding’ domain on the pFN molecule competent for adherence and neurite extension of these neuroblastoma cells, as well as the potential role of pFN binding to a complex ganglioside on the surface of these neural tumor cells in these processes.  相似文献   

2.
Human neuroblastoma cells (Platt and La-N1) adhere and extend neurites on a ganglioside GM1-binding substratum provided by cholera toxin B (CTB). These adhesive responses, similar to those on plasma fibronectin (pFN), require the mediation of one or more cell-surface proteins [G. Mugnai and L. A. Culp (1987) Exp. Cell Res. 169, 328]. The involvement of two pFN receptor molecules in ganglioside GM1-mediated responses on CTB have now been tested. In order to test the role of cellular FN binding to its glycoprotein receptor integrin, a soluble peptide containing the Arg-Gly-Asp-Ser (RGDS) sequence was added to the medium. It did not inhibit attachment on CTB but completely inhibited formation of neurites; in contrast, the RGDS peptide minimally inhibited attachment or neurite formation on pFN. Once formed, neurites on CTB became resistant to the peptide. In order to test the role of cell-surface heparan sulfate proteoglycan (HS-PG), two approaches were used. First, the HS-binding protein platelet factor-4 (PF4) was used to dilute CTB or pFN on the substratum or, alternatively, added to the medium. Diluting the substratum ligand with PF4 had no effects on attachment on either CTB or pFN. However, neurite formation on CTB was readily inhibited and on pFN partially inhibited; the effects of PF4 were far greater than a similar dilution with nonbinding albumin. When PF4 was added to the medium of cells, attachment on either substratum was unaffected as was neurite outgrowth on pFN, revealing differences in PF4's inhibition as the substratum-bound or medium-borne component. In contrast, PF4 in the medium at low concentrations (1 microgram/ml) was highly inhibitory for neurite formation on CTB. The second approach utilized the addition of bovine cartilage dermatan sulfate proteoglycan (DS-PG), shown to bind to pFN as well as to substratum-bound CTB by ELISA, or cartilage chondroitin sulfate/keratan sulfate proteoglycan (CS/KS-PG) to the substratum or to the medium. At low concentrations, DS-PG but not CS/KS-PG actually stimulated neurite formation on CTB while at higher concentrations DS-PG completely inhibited attachment and neurite formation. While DS-PG partially inhibited attachment on pFN, it had no effect on neurite formation of the attached cells. Neuroblastoma cells adhered to some extent to substrata coated only with DS-PG, indicating "receptors" for PGs that permit stable interaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Subclones of F11 neuronal hybrid cells (neuroblastoma x dorsal root ganglion neurons) have segregated differing and/or overlapping neuritogenic mechanisms on three substrata--plasma fibronectin (pFN) with its multiple receptor activities, cholera toxin B subunit (CTB) for binding to ganglioside GM1, and platelet factor-4 (PF4) for binding to heparan sulfate proteoglycans. In this study, specific cell surface receptor activities for the three substrata were tested for their modulation during neuritogenesis by several experimental paradigms, using F11 subclones representative of three differentiation classes (neuritogenic on pFN only, on CTB only, or on all three substrata). When cycloheximide was included in the medium to inhibit protein synthesis during the active period, neurite formation increased significantly for all subclones on all three substrata, virtually eliminating substratum selectivity for differentiation mediated by cell surface integrin, ganglioside GM1, or heparan sulfate proteoglycans. Therefore, one or more labile proteins (referred to as disintegrins) must modulate functions of matrix receptors (e.g., integrins) mediating neurite formation. To verify whether cycloheximide-induced neuritogenesis was also regulated by integrin interaction with cell surface GM1, two approaches were used. When (Arg-Gly-Asp-Ser)-containing peptide A was added to the medium, it completely inhibited cycloheximide-induced neuritogenesis on all three substrata of all subclones, indicating stringent requirement for cell surface integrin function in these mechanisms. In contrast, when CTB or a monoclonal anti-GM1 antibody was also added to the medium, cycloheximide-induced neuritogenesis was amplified further on pFN and sensitivity to peptide A inhibition was abolished. Therefore, in some contexts ganglioside GM1 must complex with integrin receptors at the cell surface to modulate their function. These results also indicate that (a) cycloheximide treatment leads to loss of substratum selectivity in neuritogenesis, (b) this negative regulation of neurite outgrowth is affected by integrin receptor association with labile regulatory proteins (disintegrins) as well as with GM1, and (c) complexing of GM1 by multivalent GM1-binding proteins shifts neuritogenesis from an RGDS-dependent integrin mechanism to an RGDS-independent receptor mechanism.  相似文献   

4.
Attachment and neurite extension processes have been evaluated for an immortalized derivative cell of a rat dorsal root neuron after fusion with a mouse neuroblastoma cell (the clonal F11 hybrid cell line) and these processes compared with previous studies of neuroblastoma cells, since both cell types may be derived from the neural crest of the developing embryo. Biochemically defined substrata were provided by human plasma fibronectin (pFN), the heparan sulfate-binding protein platelet factor-4 (PF4), and the ganglioside GM1-binding protein cholera toxin B subunit (CTB). While some attachment of unsupplemented cells was noted on CTB substrata, GM1 supplementation permitted F11 cells to attach as well on CTB as on pFN or PF4. On PF4, very few neurite processes were observed while on pFN two morphologically distinct types of neurites could be identified: short, linear processes in a low percentage of cells resembling those of neuroblastoma cells and long, irregular and narrow processes in a higher percentage of cells resembling those of dorsal root neurons. On CTB, neurites of the latter class were even more prominent; however, cell bodies on CTB failed to spread by cytoplasmic extension as commonly observed in F11 cells on pFN and, to some extent, on PF4. The formation of both neurite classes on either pFN or CTB was completely inhibited by low concentrations of an RGDS (Arg-Gly-Asp-Ser) peptide in the medium of cultures, indicating the significance of pFN's binding to cell surface integrin or ganglioside GM1's possible interaction with integrin for mediating the differentiative process. In contrast, neurite formation of neuroblastoma cells is refractile to the soluble peptide as reported previously. Neurite extensions of F11 cells on either pFN or CTB were comparably sensitive to low concentrations of cytochalasin D, revealing the mediation of microfilament reorganization in these processes. Treatment of F11 cells with cycloheximide failed to inhibit neurite extension on pFN but did partially inhibit extension on CTB; this contrasts with the very high sensitivity of neurite formation by neuroblastoma cells on CTB substrata reported previously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Human and rat neuroblastoma cells extend neurites over plasma fibronectin (pFN)-coated substrata. For resolution of which fibronectin binding activities (the cell-binding domain (CBD), the heparan sulfate-binding domains, or a combination of the two) are responsible for neurite outgrowth, CBD was prepared free of heparan sulfate-binding activity as described by Pierschbacher et al. (Cell 26 (1981) 259-267). Neuroblastoma cells attached and extended neurites as stably and as effectively on CBD-coated substrata as on intact pFN, while cytoplasmic spreading was more extensive on pFN-coated substrata. The structures of growth cones on CBD or pFN were virtually identical. On substrata coated with the model heparan sulfate-binding protein, platelet factor 4 (PF4), cells attached and spread somewhat but never extended neurites. When cells were challenged with substrata coated with various ratios of CBD and PF4, PF4 was found to be an effective inhibitor of CBD-mediated neurite extension. Similarly, cells grown on substrata coated at different locations with CBD or PF4 in order to evaluate topographical dependence of growth cone formation extended neurites only onto the CBD-coated region or along the interface between these two proteins, but never onto the PF4 side of cells that bridged the interface. These studies indicate that (a) the CBD activity of pFN, and not its heparan sulfate-binding activity, is the critical determinant in neurite extension of these neural tumor cells from the central nervous system; (b) under some circumstances, heparan sulfate-binding activity can be antagonistic to neurite extension; (c) the chemical nature of the substratum controls the direction of neurite extension; (d) these neuroblastoma cells respond to these binding proteins very differently than fibroblasts or neurons from the peripheral nervous system.  相似文献   

6.
Human neuroblastoma cells (Platt and La-N1) have previously been shown to adhere and extend neurites on tissue-culture substrata coated with a 120K chymotryptic cell-binding fragment (CBF) of plasma fibronectin (pFN), a fragment which lacks heparan sulfate- and collagen-binding activities, and to adhere to—but not extend neurites on—substrata coated with the heparan sulfate (HS)-binding protein, platelet factor-4 (PF4) ([3.]). The mechanisms of these processes on CBF, on the intact pFN molecule, or on heparin-binding fragments of pFN have been tested using a heptapeptide (peptide A) containing the Arg---Gly---Asp---Ser (RGDS) sequence which recognizes a specific ‘receptor’ on the surface of a variety of cells or a control peptide with a single amino acid substitution. Adherence and neurite extension were completely inhibited on the 120K CBF by peptide A but not by control peptide; these results indicate that the RGDS-dependent ‘receptor’ is solely responsible for adhesive responses to the 120K CBF-containing region of the pFN molecule. When peptide A was added to cells on CBF which had already formed neuntes to test reversibility, retraction of all neurite processes was induced by 1 h and cells eventually detached. In contrast, on intact pFN, peptide A had very limited effects on either initial adherence or neurite extension, revealing a second ‘cell-binding’ domain on the fibronectin molecule outside of the 120K region competent for neurite differentiation; addition of peptide A at later times to pFN-adherent, neurite-containing cells could induce only a small subset of neurites to retract, thus supporting evidence for the presence of this second domain. A second ‘cell-binding’ domain was further confirmed by quantitation of neurite outgrowth on these substrata and by analyses of cells on substrata coated with mixtures of CBF/PF4. When substrata coated with chymotrypsin-liberated HBF were tested in a similar fashion, adherence was rapid but neurite outgrowth required much longer times and was completely sensitive to RGDS peptides; supplementation of cells with the complex ganglioside GT1b could not induce RGDS-resistant neurites on heparin-binding fragments (HBF). These latter results indicate that neurite extension on HBF is a consequence of a low concentration of RGDS-dependent activity in HBF (but not to HS-binding activity as characterized by Tobey et al. [3]) and that the second ‘cell-binding’ domain is sensitive to chymotrypsin digestion of pFN during the liberation of HBF. Possible candidate molecules for this second activity as well as its preliminary location in the pFN molecule are discussed and evidence, is provided in ref. [37] ([37.]) for the potential role for one class of molecules as a ‘receptor’. These neural tumor cells therefore have multiple and alternative mechanisms of adherence and differentiation on fibronectin matrices.  相似文献   

7.
Attachment and neurite extension have been measured when Platt or La-N1 human neuroblastoma cells respond to tissue culture substrata coated with a panel of complementary fragments from the individual chains of human plasma (pFN) or cellular fibronectins (cFN) purified from thermolysin digests. A 110-kD fragment (f110), which contains the Arg-Gly-Asp-Ser sequence (RGDS)-dependent cell-binding domain but no heparin-binding domains and whose sequences are shared in common by both the alpha- and beta-subunits of pFN, facilitated attachment of cells that approached the level observed with either intact pFN or the heparan sulfate-binding platelet factor-4 (PF4). This attachment on f110 was resistant to RGDS-containing peptide in the medium. Neurite outgrowth was also maximal on f110, and half of these neurites were also resistant to soluble RGDS peptide. Treatment of cells with glycosaminoglycan lyases failed to alter these responses on f110. Therefore, there is a second "cell-binding" domain in the sequences represented by f110 that is not RGDS- or heparan sulfate-dependent and that facilitates stable attachment and some neurite outgrowth; this domain appears to be conformation-dependent. Comparisons were also made between two larger fragments generated from the two subunits of pFN-f145 from the alpha-subunit and f155 from the beta-subunit--both of which contain the RGDS-dependent cell-binding domain and the COOH-terminal heparin-binding domain but which differ in the former's containing some IIICS sequence at its COOH terminus and the latter's having an additional type III homology unit. Heparin-binding fragments (with no RGDS activity) of f29 and f38, derived from f145 or f155 of pFN, respectively, and having the same differences in sequence, were also compared with f44 + 47 having the "extra domain" characteristic of cFN. Attachment on f145 was slightly sensitive to soluble RGDS peptide; attachment on f155 was much more sensitive. There were also differences in the percentage of cells with neurites on f145 vs. f155 but neurites on either fragment were completely sensitive to RGDS peptide. Mixing of f29, f38, or PF4 with f110 could not reconstitute the activities demonstrated in f145 or f155, demonstrating that covalently linked sequences are critical in modulating these responses. However, mixing of f44 + 47 from cFN with f110 from pFN increased the sensitivity to RGDS peptide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have examined conditions under which aggregates of embryonic chick neural retina will extend neurities in vitro. Trypsin-dispersed cells from 7-day embryonic chick neural retina were aggregated in rotation culture for 8 hr and maintained in serum-free medium on a variety of standard culture substrate. Aggregates extend few neurites on untreated plastic, glass, or collagen substrata. However, pretreatment of these substrata with human plasma fibronectin enhances their capacity to support retinal neurite outgrowth. Aggregates cultured on fibronectin-treated substrata extend long, radially oriented neurites within 36 hr in vitro. The morphology of these neurites is distinct from that seen when aggregates are cultured on polylysine-treated substrata. In the latter case, neurites are highly branched and grow concentrically around the aggregate perimeter. Addition of fibronectin to polylysine-treated substrata stimulates radial neurite outgrowth. Promotion of neurite outgrowth is dependent on the amount of fibronectin bound to the culture substratum and on the pH at which binding occurs. The requirements for fibronectin-mediated neurite outgrowth are more stringent than those previously reported for fibroblast attachment and spreading.  相似文献   

9.
Adhesion responses of fibroblasts (Balb/c 3T3 cells) and human neuron-derived (Platt neuroblastoma) cells have been examined with plasma fibronectin (pFN) adsorbed to glass surfaces derivatized with an alkyl chain and six chemical end groups interfacing with the bound pFN to test regulation of pFN function. Using new derivatization protocols, the following surfaces have been tested in order of increasing polarity: [CH3], [C = C], [Br], [CN], [Diol], [COOH], and underivatized glass [( SiOH]). For all substrata, pFN bound equivalently using either a supersaturating amount of pFN or a subsaturating amount in competition with bovine albumin. Attachment of both cell types was also equivalent on all substrata. However, spreading/differentiation responses varied considerably. F-actin reorganization was tested in 3T3 cells with rhodamine-phalloidin staining. While stress fibers formed effectively on pFN-coated [SiOH] and [Br] substrata, only small linear bundles of F-actin and a few thin stress fibers were observed on the [COOH], [Diol], and [CN] substrata; the hydrophobic substrata [( CH3] and [C = C]) gave an intermediate response. When a synthetic peptide containing the Arg-Gly-Asp-Ser sequence required for integrin binding to FNs was included in the medium as an inhibitor, additional differences were noted: Stress fiber formation was completely inhibited on [SiOH] but not on [Br] and stress fiber formation was very sensitive to inhibition on the hydrophobic substrata while the F-actin patterns on the [CN] and [COOH] substrata were unaffected. Evaluation of neurite outgrowth by neuroblastoma cells on these substrata revealed both qualitative and quantitative differences as follows: [Diol] = [COOH] greater than [SiOH] much greater than [CN] = [Br] greater than [CH3] = [C = C]. While there was poor cytoplasmic spreading and virtually no neurites formed on the hydrophobic surfaces when pFN alone was adsorbed, neurite formation could be "rescued" if a mixture of pFN with an excess of bovine albumin was adsorbed, demonstrating complex conformational interactions between substratum-bound pFN and adhesion-inert neighboring molecules. In summary, these studies demonstrate that different chemical end groups on the substratum modulate pFN functions for cell adhesion, principally by affecting the conformation of these molecules rather than the amounts bound. Furthermore, these studies confirm multiple-receptor interactions with the FN molecules in cell type-specific adhesion patterns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
When culture medium, conditioned by any of several cell types, is applied to a polycationic substratum, a substance is adsorbed that causes neurons cultured on that substratum to extend processes (neurites) rapidly and profusely. We have purified the factor responsible for this effect from medium conditioned by bovine corneal endothelial cells, and have shown that it is composed of the glycoprotein laminin and two associated laminin-binding molecules: a sulfated protein known as entactin, and a large heparan sulfate proteoglycan. Of these molecules, only laminin was found to be present throughout the purification in all fractions possessing neurite outgrowth-promoting activity and absent from all fractions lacking activity. Laminin, purified from other sources, has been shown previously to promote extensive outgrowth by cultured neurons. These and other data presented here support the conclusion that laminin is responsible for the neurite outgrowth-promoting activity of the conditioned medium factor. Evidence is also presented that the association of a proteoglycan with laminin promotes efficient attachment of laminin to polycationic substrata, particularly in the presence of competing molecules.  相似文献   

11.
The effects of various substrata including laminin, collagen gel, collagen I, and human amniotic basement membrane on neurite outgrowth of occipital cortical and diencephalic explants were studied. The results showed that the extent and pattern of growing neurites of cortical explants varied considerably depending on the substrata used. While an elaborated network of growing neurites was observed when cortical explants were plated on laminin, the most extensive neurite outgrowth was observed when collagen gel was used as the substratum. In contrast, diencephalic explants did not grow on most of the substrata. The significance of the findings are discussed.  相似文献   

12.
SH-SY-5Y human neuroblastoma cells rapidly elaborated an extensive network of neuritic processes following treatment with staurosporine, an inhibitor of protein kinase C. These neurites were retracted within 24hr following removal of inhibitor. Another inhibitor of protein kinase C, H7 [1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride], also induced rapid, reversible neurite outgrowth. However, neurites induced by these two inhibitors were morphologically distinct: staurosporine-treated cells elaborated a branching neuritic network adjacent to cell bodies, with some longer, unbranching neurites extending out of this network, while H7-treated cells elaborated only long, unbranching neurites. HA-1004 [N-(2-guanidinoethyl)-5-isoquinolinesulfonamide], which inhibits of cAMP- and cGMP-dependent protein kinases but not protein kinase C, did not induce neuritogenesis. Staurosporine-induced neurite outgrowth did not require protein synthesis but did require microtubule assembly, suggesting that cells contained the necessary components for neuritogenesis, and that alterations in protein phosphorylation alone was sufficient to initiate neurite outgrowth by rearrangement of existing structures or cytoskeletal precursors. These results implicate phosphorylation in the regulation of neuronal differentiation and neuritogenesis.  相似文献   

13.
Cultured embryonic heart cells release a powerful inducer of neurite outgrowth into the surrounding medium. The present report demonstrates that these cells also deposit material which induces neurite outgrowth directly onto their culture substratum. Thus, embryonic heart cells condition both the culture medium and the culture substratum with respect to neurite outgrowth. Conditioned substrata were prepared by incubating heart cell monolayers in EDTA until the cells released from the substratum and were discarded. When dissociated neurons from ciliary or sympathetic chain ganglia were plated in fresh medium onto a conditioned substratum, neurite outgrowth was initiated in 80–95% of the neurons within 60 min. The neurite-inducing activity is trypsin sensitive, but is not inactivated by antibodies to the cell attachment protein fibronectin, by the membrane-solubilizing detergent Triton X-100, or by the enzymes collagenase, RNase, or DNase. The factor in conditioned medium which also induces neurite outgrowth depends for its activity on attachment to an artificial polyornithine substratum, under which condition it appears to promote adhesion of neuronal filopodia to the substratum. Thus, neurite outgrowth in these two culture systems occurs only if the substratum is conditioned by the appropriate extracellular materials: conditioned either directly by the deposition of heart cell products or indirectly by the binding of a conditioned medium factor to the polyornithine substratum. These substratum-conditioning factors may be related to those components of the extracellular matrix which support neurite outgrowth in vivo.  相似文献   

14.
The initial outgrowth of neuritogenesis in mouse NB2a/d1 neuroblastoma cells may be regulated by thrombin or a thrombin-like protease, present either in serum or adsorbed to the plasma membrane, since neuritogenesis is induced by serum deprivation and treatment with the specific thrombin inhibitor, hirudin (Shea et al., 1991, J. Neurochem., 56:842). Cultured astroglial cells secrete factors that promote neuritogenesis, including protease inhibitors active against thrombin, leading to suggestions that the inhibition of specific neuronal surface proteases by the surrounding glial environment may represent an initial step in axonal outgrowth in situ. To examine the relative importance of glial-derived protease inhibitory activities on neurine outgrowth, we tested the neurite promoting effect of glial-conditioned medium (GCM) on NB2a/d1 cells. Like serum deprivation and hirudin treatment, GCM induced neurite outgrowth within 4 hr. Exogenous thrombin inhibited the effect of GCM, and cell-free enzyme assays confirmed the presence of thrombin-inhibitory activity in GCM, suggesting that GCM induces neuritogenesis by inhibition of a thrombin-like protease. Unlike neurites induced by serum removal or hirudin addition, which are rapidly resorbed following serum replenishment or hirudin depletion, however, GCM-induced neurites continued to elongate after GCM removal. Furthermore, cultures treated simultaneously with GCM and thrombin exhibited delayed outgrowth of neurites following GCM removal which were insensitive to further thrombin treatment. These findings indicate that the initial elaboration of neurites can be mediated by glial-derived protease inhibitor(s) active against a thrombin-like protease, but indicate the requirement of additional glial-derived factors for the maintenance and continued elaboration of these neurites.  相似文献   

15.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

16.
In order to search for novel components of lipid membrane microdomains involved in neural signalling pathways, mAbs (monoclonal antibodies) were raised against the detergent-insoluble membrane fraction of PC12 (pheochromocytoma) cells. Among the 22 hybrid clones, mAb PR#1 specifically detected a fucoganglioside Fuc(Gal)-GM1 [a-fucosyl(a-galactosyl)-GM1], a ganglioside homologous with GM1a (II3NeuAc,GgOse4Cer), as a novel member of microdomain components with biological functions. In the presence of mAb PR#1 in the culture medium, the outgrowth of neurites was induced in PC12 cells in a dose-dependent manner, with no effects on cell proliferation, suggesting that Fuc(Gal)-GM1 is preferentially involved in PC12 cell neuritogenesis. Effects through Fuc(Gal)-GM1 were different from those through GM1a during differentiation, e.g. under PR#1 treatment on Fuc(Gal)-GM1, round cell bodies with thinner cell processes were induced, whereas treatment with CTB (cholera toxin B subunit), a specific probe for GM1a, produced flattened cell bodies with thicker pro-cesses. Molecular analysis demonstrated that the PR#1-Fuc(Gal)-GM1 pathway was associated with Fyn and Yes of the Src family of kinases, although Src itself was not involved. No association was found with TrkA (tropomyosin receptor kinase A) and ERKs (extracellular-signal-regulated kinases), which are responsible for GM1a-induced differentiation. From these findings, it is suggested that a fucoganglioside Fuc(Gal)-GM1 provides a functional platform distinct from that of GM1a for signal transduction in PC12 cell differentiation.  相似文献   

17.
《The Journal of cell biology》1993,122(5):1131-1143
Electrical signals elicited by integrin interaction with ECM components and their role in neurite outgrowth were studied in two clones (N1 and N7) isolated from 41A3 murine neuroblastoma cell line. Although the two clones similarly adhered to fibronectin (FN) and vitronectin (VN), this adhesion induced neurite outgrowth in N1 but not in N7 cells. Patch clamp recordings in whole cell configuration showed that, upon adhesion to FN or VN but not to platelet factor 4 (PF4), N1 cells undergo a marked (approximately equal to 20 mV) hyperpolarization of the resting potential (Vrest) that occurred within the first 20 min after cell contact with ECM, and persisted for approximately 1 h before reverting to the time zero values. This hyperpolarization was totally absent in N7 cells. A detailed analysis of the molecular mechanisms involved in N1 and N7 cell adhesion to ECM substrata was performed by using antibodies raised against the FN receptor and synthetic peptides variously competing with the FN or VN binding to integrin receptor (GRGDSP and GRGESP). Antibodies, as well as GRGDSP, abolished adhesion of N1 and N7 clones to FN and VN, revealing a similar implication of integrins in the adhesion of these clones to the ECM proteins. However, these anti-adhesive treatments, while ineffective on Vrest of N7 cells, abolished in N1 cells the FN- or VN-induced hyperpolarization and neurite outgrowth, that appeared therefore strictly associated and integrin-mediated phenomena. The nature of this association was deepened through a comparative analysis of the integrin profiles and the ion channels of N1 and N7 cells. The integrin immunoprecipitation profile resulted very similarly in the two clones, with only minor differences concerning the alpha V containing complexes. Both clones possessed Ca2+ and K+ delayed rectifier (KDR) channels, while only N1 cells were endowed with inward rectifier K+ (KIR) channels. The latter governed the Vrest, and, unlike KDR channels, were blocked by Ba2+ and Cs+. By moving patched cells in contact with FN-coated beads, it was shown that KIR channel activation was responsible for the FN-mediated hyperpolarization of Vrest. Treatment with Pertuxis toxin (PTX) abolished this hyperpolarization and neurite outgrowth, indicating that a G protein is interposed between integrins and KIR channels and that the activation of these channels is required for neuritogenesis. In fact, the block of KIR channels by Cs+ abolished both hyperpolarization and neurite outgrowth, provided that the cation was supplied during the first two hours after N1 cell contact with FN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Chick embryo dorsal root and sympathetic ganglia cultured on untreated tissue culture plates exhibited a dependence upon both RNA and protein synthesis for the expression of nerve growth factor-mediated neurite outgrowth. Neurite outgrowth was no longer dependent upon RNA synthesis, but remained dependent upon continued protein synthesis when ganglia were cultured in plasma clots, or on either collagen or poly-l-lysine coated plates. Nerve growth factor-induced neurite outgrowth was dependent upon the presence of either microexudates, which may play an important role as functional components of the substratum across which neurites migrate, or exogenous substrata such as collagen, fibrin, or poly-l-lysine.  相似文献   

19.
BALB/c 3T3 cells make both close contacts and tight-focal contacts (with associated microfilament stress fibers) on plasma fibronectin (pFN)-coated substrata. To resolve the importance of the heparan sulfate-binding or cell-binding activities of the pFN molecule in these adhesive responses, a cell-binding fragment (120K) (CBF) free of any heparan sulfate-binding activity was prepared from human pFN by chymotrypic digestion and isolated as described by Pierschbacher et al. (Cell 26 (1981) 259). These adhesive responses to CBF were also compared to those of the model heparan sulfate-binding protein, platelet factor-4 (PF4), or heparin-binding fragments (HBF) of pFN. On intact pFN, greater than 70% of the cells formed tight-focal contacts and associated stress fibers by 4 h, the latter staining with NBD-phallacidin. In contrast, cells spread differently on CBF and failed to form tight-focal contacts; staining with NBD-phallacidin was localized to spiky projections at the cell margin with no detectable stress fiber formation. On PF4 or HBF, cells failed to form tight-focal contacts but did spread well and formed long microfilament bundles in peripheral lamellae. Spreading on CBF, HBF, or PF4 was paralleled by formation of close contacts. Spreading and to some extent attachment of cells on CBF was inhibited with a small peptide containing the Arg-Gly-Asp-Ser sequence; responses on HBF were unaffected by this peptide. When mixtures of CBF and PF4 were tested, cells still failed to form tight-focal contacts and stress fibers. These results demonstrate that the binding of CBF to its probable receptor under conditions routinely used to assay spreading activity results in an incomplete adhesive response compared with intact pFN. While this partial response may result from quantitative differences in the density of active cell-binding domains on the substratum, the pattern of microfilament reorganization produced by the binding of PF4 to cell surface heparan sulfate proteoglycans suggests that the ability of pFN to promote formation of tight-focal contacts and stress fibers may reside in the coordinate interaction of two or more binding activities in the intact molecule.  相似文献   

20.
T B Shea  M L Beermann 《FEBS letters》1992,307(2):190-194
The relative contribution of two neuronal surface proteases, plasmin and a protease with thrombin-like specificity, on NB2a/dl neuroblastoma migration and neuritogenesis were examined. Exogenous plasmin induced cell body rounding and increased cell migration, but did not prevent or reverse neurite outgrowth. Inhibition of endogenous plasmin by its specific inhibitor, aprotinin, suppressed migration but did not induce neuritogenesis. Removal or inhibition of the thrombin-like protease by serum deprivation or hirudin addition, respectively, induced neurite outgrowth, as shown in our previous studies, but did not suppress migration. By contrast, trypsin induced simultaneous cell rounding and neurite retraction. These findings indicated that plasmin may regulate cell migration, while the thrombin-like protease may regulate facets of neurite outgrowth. Although unable to induce de novo neuritogenesis, plasmin inhibition potentiated the otherwise transient neurites induced by simultaneous inhibition of the thrombin-like protease. Since cultured neuronal cells migrate primarily in the direction of newly elaborated neurites, this finding is interpreted to indicate that cessation of neuronal migration by plasmin inhibition enhances net neurite outgrowth by inhibition of the putative thrombin-like protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号