首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A full-length cDNA encoding a SUMO-1-specific protease, named SUSP1, was identified and cloned for the first time from the human brain. Nucleotide sequence analysis of the cDNA containing an open reading frame of 3336 base pairs revealed that the protease consists of 1112 amino acids with a calculated molecular mass of 126,116 Da. Like yeast Ulp1, SUSP1 is a cysteine protease containing the well conserved His/Asp/Cys catalytic triad. SUSP1 expressed in Escherichia coli cells efficiently released SUMO-1 from SUMO-1. beta-galactosidase fusion but not from other ubiquitin-like protein fusions, including Smt3.beta-galactosidase, suggesting its role in the generation of matured SUMO-1 specifically from its precursors. Interestingly, reproductive organs, such as testis, ovary, and prostate, contained much higher amounts of SUSP1 mRNA than colon and peripheral blood leukocyte, whereas other tissues, such as heart and spleen, had little or none. In addition, confocal microscopy using green fluorescent protein.SUSP1 fusion showed that SUSP1 is exclusively localized to the cytoplasm of NIH3T3 and HeLa cells. These results suggest that SUSP1 may play a role in the regulation of SUMO-1-mediated cellular processes particularly related to reproduction.  相似文献   

5.
6.
7.
8.
9.
10.
11.
SUSP1 antagonizes formation of highly SUMO2/3-conjugated species   总被引:4,自引:0,他引:4       下载免费PDF全文
Small ubiquitin-related modifier (SUMO) processing and deconjugation are mediated by sentrin-specific proteases/ubiquitin-like proteases (SENP/Ulps). We show that SUMO-specific protease 1 (SUSP1), a mammalian SENP/Ulp, localizes within the nucleoplasm. SUSP1 depletion within cell lines expressing enhanced green fluorescent protein (EGFP) fusions to individual SUMO paralogues caused redistribution of EGFP-SUMO2 and -SUMO3, particularly into promyelocytic leukemia (PML) bodies. Further analysis suggested that this change resulted primarily from a deficit of SUMO2/3-deconjugation activity. Under these circumstances, PML bodies became enlarged and increased in number. We did not observe a comparable redistribution of EGFP-SUMO1. We have investigated the specificity of SUSP1 using vinyl sulfone inhibitors and model substrates. We found that SUSP1 has a strong paralogue bias toward SUMO2/3 and that it acts preferentially on substrates containing three or more SUMO2/3 moieties. Together, our findings argue that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.  相似文献   

12.
13.
14.
15.
The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号