共查询到20条相似文献,搜索用时 15 毫秒
1.
Muhannad Abu-Remaileh Rami I Aqeilan 《Experimental biology and medicine (Maywood, N.J.)》2015,240(3):345-350
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3–4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression. 相似文献
2.
The LKB1 (also called serine/threonine kinase 11) tumor suppressor gene was cloned in 1998 by linkage analysis of Peutz-Jeghers cancer syndrome patients. Mammalian LKB1 has been implicated as a regulator of multiple biological processes and signaling pathways, including the control of cell-cycle arrest, p53-mediated apoptosis, Wnt signaling, transforming growth factor (TGF)-beta signaling, ras-induced cell transformation, and energy metabolism. The Caenorhabditis elegans and Drosophila melanogaster LKB1 homologs, termed PAR4 and dLKB1, respectively, regulate cell polarity. Recently, mammalian LKB1 was found to be active only in a complex with two other proteins--STRAD and MO25--and to induce complete polarization of intestinal epithelial cells in a cell-autonomous fashion. In this article, we summarize the findings regarding LKB1 over the past six years. In addition, we discuss LKB1 in polarity in the context of both the other PAR proteins and its tumor suppressive activities. 相似文献
3.
AZU-1: a candidate breast tumor suppressor and biomarker for tumor progression 总被引:2,自引:0,他引:2 下载免费PDF全文
Chen HM Schmeichel KL Mian IS Lelièvre S Petersen OW Bissell MJ 《Molecular biology of the cell》2000,11(4):1357-1367
To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis. 相似文献
4.
The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation 总被引:45,自引:0,他引:45 下载免费PDF全文
Shivakumar L Minna J Sakamaki T Pestell R White MA 《Molecular and cellular biology》2002,22(12):4309-4318
5.
Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. 总被引:13,自引:0,他引:13
Progression of resting quiescent G(0) cells into early G(1) and transition across the restriction point are highly regulated processes. Mutation of proto-oncogenes and tumor suppressor genes regulating these transitions are targeted during oncogenesis. Recent work has underscored the importance of the G(0) to early G(1) transition and metabolism to neoplastic cells. 相似文献
6.
Hui-chan He Xiao-hui Ling Jian-guo Zhu Xin Fu Zhao-dong Han Yu-xian Liang Ye-han Deng Zhuo-yuan Lin Guo Chen Yan-fei Chen Ru-jun Mo Wei-de Zhong 《Molecular biology reports》2013,40(5):3799-3805
The ErbB3 binding protein 1 (Ebp1) represents a downstream effector of the ErbB signaling network and has been demonstrated to be a potent tumor suppressor in various human malignancies, however, its involvement in human bladder cancer is still unclear.To investigate the clinical significance and potential role of ErbB3 binding protein 1 (Ebp1) in bladder cancer. Ebp1 expression at protein and gene levels in 52 surgically removed bladder cancer specimens as well as 21 adjacent normal bladder specimens were respectively detected by immunohistochemistry and qRT-PCR. The association of Ebp1 protein expression with the clinicopathological features of bladder cancer was also statistically analyzed. Its roles in bladder cancer cell line were further evaluated. The expression level of Ebp1 protein and gene in bladder cancer tissues was significantly lower than that in adjacent normal bladder tissues (P < 0.01). When categorized into low vs. high expression, the down-regulation of Ebp1 protein was associated with the advanced pathologic stage (P = 0.036) and the high histologic grade (P = 0.001) of patients with bladder cancer. Moreover, following the transfection of Ebp1 in bladder cancer cells, not only cell proliferation and cell invasion decreased significantly, but also the cell cycle was blocked at G0/G1 stage. Our data suggest for the first time that the down-regulation of Ebp1 closely correlates with advanced clinicopathological characteristics of human bladder cancer. Furthermore, Ebp1 plays an important role in the bladder cancer cells’ proliferation by regulating the cancer cell cycle from G0/G1 to S. 相似文献
7.
8.
Barbara Herkert Anne Dwertmann Steffi Herold Mona Abed Jean-Francois Naud Florian Finkernagel Gregory S. Harms Amir Orian Michael Wanzel Martin Eilers 《The Journal of cell biology》2010,188(6):905-918
Oncogenic stress induces expression of the alternate reading frame (Arf) tumor suppressor protein. Arf then stabilizes p53, which leads to cell cycle arrest or apoptosis. The mechanisms that distinguish both outcomes are incompletely understood. In this study, we show that Arf interacts with the Myc-associated zinc finger protein Miz1. Binding of Arf disrupts the interaction of Miz1 with its coactivator, nucleophosmin, induces the sumoylation of Miz1, and facilitates the assembly of a heterochromatic complex that contains Myc and trimethylated H3K9 in addition to Miz1. Arf-dependent assembly of this complex leads to the repression of multiple genes involved in cell adhesion and signal transduction and induces apoptosis. Our data point to a tumor-suppressive pathway that weakens cell–cell and cell–matrix interactions in response to expression of Arf and that may thereby facilitate the elimination of cells harboring an oncogenic mutation. 相似文献
9.
10.
11.
12.
13.
Joo Y Ha S Hong BH Kim Ja Chang KA Liew H Kim S Sun W Kim JH Chong YH Suh YH Kim HS 《PloS one》2010,5(12):e14203
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of the amyloid precursor protein (APP) and serves as the bipartite activation enzyme for the ubiquitin-like protein, NEDD8. In the present study, we explored the physiological role of APP-BP1 in the cell cycle progression of fetal neural stem cells. Our results show that cell cycle progression of the cells is arrested at the G1 phase by depletion of APP-BP1, which results in a marked decrease in the proliferation of the cells. This action of APP-BP1 is antagonistically regulated by the interaction with APP. Consistent with the evidence that APP-BP1 function is critical for cell cycle progression, the amount of APP-BP1 varies depending upon cell cycle phase, with culminating expression at S-phase. Furthermore, our FRET experiment revealed that phosphorylation of APP at threonine 668, known to occur during the G2/M phase, is required for the interaction between APP and APP-BP1. We also found a moderate ubiquitous level of APP-BP1 mRNA in developing embryonic and early postnatal brains; however, APP-BP1 expression is reduced by P12, and only low levels of APP-BP1 were found in the adult brain. In the cerebral cortex of E16 rats, substantial expression of both APP-BP1 and APP mRNAs was observed in the ventricular zone. Collectively, these results indicate that APP-BP1 plays an important role in the cell cycle progression of fetal neural stem cells, through the interaction with APP, which is fostered by phosphorylation of threonine 668. 相似文献
14.
Located at 6q22–23, Ccn6 (WISP3) encodes for a matrix-associated protein of the CCN family, characterized by regulatory, rather than structural, roles in development and cancer. CCN6, the least studied member of the CCN family, shares the conserved multimodular structure of CCN proteins, as well as their tissue and cell-type specific functions. In the breast, CCN6 is a critical regulator of epithelial-to-mesenchymal transitions (EMT) and tumor initiating cells. Studies using human breast cancer tissue samples demonstrated that CCN6 messenger RNA and protein are expressed in normal breast epithelia but reduced or lost in aggressive breast cancer phenotypes, especially inflammatory breast cancer and metaplastic carcinomas. Metaplastic carcinomas are mesenchymal-like triple negative breast carcinomas, enriched for markers of EMT and stemness. RNAseq analyses of the TCGA Breast Cancer cohort show reduced CCN6 expression in approximately 50% of metaplastic carcinomas compared to normal breast. Our group identified frameshift mutations of Ccn6 in a subset of human metaplastic breast carcinoma. Importantly, conditional, mammary epithelial-cell specific ccn6 (wisp3) knockout mice develop invasive high-grade mammary carcinomas that recapitulate human spindle cell metaplastic carcinomas, demonstrating a tumor suppressor function for ccn6. Our studies on CCN6 functions in metaplastic carcinoma highlight the potential of CCN6 as a novel therapeutic approach for this specific type of breast cancer. 相似文献
15.
The tumor suppressor protein TSLC1 is involved in cell-cell adhesion 总被引:17,自引:0,他引:17
Masuda M Yageta M Fukuhara H Kuramochi M Maruyama T Nomoto A Murakami Y 《The Journal of biological chemistry》2002,277(34):31014-31019
TSLC1 is a tumor suppressor gene encoding a member of the immunoglobulin (Ig) superfamily. The significant homology of its extracellular domain with those of other Ig superfamily cell adhesion molecules (IgCAMs) has raised the possibility that TSLC1 participates in cell-cell interactions. In this study, the physiological properties of TSLC1 were investigated in Madin-Darby canine kidney (MDCK) cells expressing TSLC1 tagged with green fluorescent protein (GFP) as well as in the cells that express endogenous TSLC1. Biochemical analysis has revealed that TSLC1 is an N-linked glycoprotein with a molecular mass of 75 kDa and that it forms homodimers through cis interaction within the plane of the cell membranes. Confocal laser scanning microcopy of the cells expressing TSLC1 showed the localization patterns characteristic to adhesion molecules. At the beginning of cell attachment, TSLC1 accumulated in interdigitated structures at cell-cell boundaries, but, when cells reached a confluence, TSLC1 was distributed all along the cell membranes. In polarized cells, TSLC1 was recruited to the lateral membrane, implying trans interaction of TSLC1 between neighboring cells. In support of this notion, MDCK cells expressing TSLC1-GFP showed a significant level of cell aggregation in the absence or presence of Ca(2+) and Mg(2+). Taken together, these results indicate that TSLC1 mediates intracellular adhesion through homophilic interactions in a Ca(2+)/Mg(2+)-independent manner. 相似文献
16.
17.
Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer. 相似文献
18.
The von-Hippel Lindau tumor suppressor protein (pVHL) is conserved throughout evolution, as its homologues are found in organisms ranging from mammals to the Drosophila melanogaster and Anopheles gambiae insects and the Caenorhabditis elegans nematode. Although the physiological role of pVHL is not fully understood, it has been shown to interact with a large number of unrelated proteins and was suggested to play a role in protein degradation as an E3 ubiquitin ligase component in the ubiquitin pathway. To gain insight into the molecular basis of pVHL activity, we analyzed its folding and stability in solution under physiologically relevant conditions. Dynamic light-scattering and gel filtration chromatography of the purified pVHL clearly indicated that the Stokes radius of the protein is larger than what would be expected from its crystal structure. However, under these conditions, the protein shows a clear secondary structure as determined by far-UV circular dichroism. Yet, the near-UV CD experiments show an absence of a tertiary structure. Upon the addition of urea, even at very low concentrations, the protein unfolds in a non-reversible manner, leading to the formation of amorphous aggregates. Furthermore, a large increase in fluorescence (>50-fold) is observed upon the addition of pVHL into a solution containing 8-anilino-1-naphthalene sulfonic acid. We therefore conclude that, under native conditions, the non-bound pVHL has a molten globule configuration with marginal stability. Although molten globular structures can be induced in many proteins under extreme conditions, this is one of the few reported cases of such a structure under the physiological conditions of pH, ionic strength, and temperature. The significance of the pVHL structural properties is being discussed in the context of its physiological activities. 相似文献
19.
The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death 总被引:7,自引:0,他引:7
Rabizadeh S Xavier RJ Ishiguro K Bernabeortiz J Lopez-Ilasaca M Khokhlatchev A Mollahan P Pfeifer GP Avruch J Seed B 《The Journal of biological chemistry》2004,279(28):29247-29254
The connector enhancer of KSR (CNK) is a multidomain scaffold protein discovered in Drosophila, where it is necessary for Ras activation of the Raf kinase. Recent studies have shown that CNK1 also interacts with RalA and Rho and participates in some aspects of signaling by these GTPases. Herein we demonstrate a novel aspect of CNK1 function, i.e. reexpression of CNK1 suppresses tumor cell growth and promotes apoptosis. As shown previously for apoptosis induced by Ki-Ras(G12V), CNK1-induced apoptosis is suppressed by a dominant inhibitor of the mammalian sterile 20 kinases 1 and (MST1/MST2). Immunoprecipitates of MST1 endogenous to LoVo colon cancer cells contain endogenous CNK1; however, no association of these two polypeptides can be detected in a yeast two-hybrid assay. CNK1 does, however, bind directly to the RASSF1A and RASSF1C polypeptides, constitutive binding partners of the MST1/2 kinases. Deletion of the MST1 carboxyl-terminal segment that mediates its binding to RASSF1A/C eliminates the association of MST1 with CNK1. Coexpression of CNK1 with the tumor suppressive isoform, RASSF1A, greatly augments CNK1-induced apoptosis, whereas the nonsuppressive RASSF1C isoform is without effect on CNK1-induced apoptosis. Overexpression of CNK1-(1-282), a fragment that binds RASSF1A but is not proapoptotic, blocks the apoptosis induced by CNK1 and by Ki-Ras(G12V). Thus, in addition to its positive role in the proliferative outputs of active Ras, the CNK1 scaffold protein, through its binding of a RASSF1A.MST complex, also participates in the proapoptotic signaling initiated by active Ras. 相似文献
20.
El Omari K Bird LE Nichols CE Ren J Stammers DK 《The Journal of biological chemistry》2005,280(18):18229-18236