首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation.  相似文献   

5.
Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells.  相似文献   

6.
Tumor cells require high levels of cholesterol for membrane biogenesis for rapid proliferation during development. Beyond the acquired cholesterol from low-density lipoprotein (LDL) taken up from circulation, tumor cells can also biosynthesize cholesterol. The molecular mechanism underlying cholesterol anabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are unclear. Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we identified that LPCAT1 is highly expressed in ESCC and that LPCAT1 reprograms cholesterol metabolism in ESCC. LPCAT1 expression was negatively correlated with patient prognosis. Cholesterol synthesis in ESCC cells was significantly inhibited following LPCAT1 knockdown; cell proliferation, invasion, and migration were significantly reduced, along with the growth of xenograft subcutaneous tumors. LPCAT1 could regulate the expression of the cholesterol synthesis enzyme, SQLE, by promoting the activation of PI3K, thereby regulating the entry of SP1/SREBPF2 into the nucleus. LPCAT1 also activates EGFR leading to the downregulation of INSIG-1 expression, facilitating the entry of SREBP-1 into the nucleus to promote cholesterol synthesis. Taken together, LPCAT1 reprograms tumor cell cholesterol metabolism in ESCC and can be used as a potential treatment target against ESCC.Subject terms: Cancer metabolism, Cancer prevention  相似文献   

7.
8.
9.

Background

Urothelial bladder cancer is the ninth most common cancer. Despite surgical and chemotherapeutic treatment the prognosis is still poor once bladder cancer progresses to a muscle-invasive state. Discovery of new diagnostic markers and pathophysiologic effectors might help to contribute to novel diagnostic and therapeutic options. The extracellular matrix microenvironment shaped by the extracellular matrix critically affects tumor cell and stroma cell functions. Therefore, aim of the present study was to assess the possible implication of the small leucine-rich proteoglycan biglycan in progression of human urothelial bladder cancer.

Methods and Results

For this purpose tumor biopsies of 76 bladder cancer patients with different tumor stages (pTa, pT1-T4) were investigated with respect to biglycan expression and correlated with a long-term (10 years) clinical follow-up. Interestingly, higher biglycan mRNA expression was associated with higher tumor stages and muscle invasiveness. In vitro knock-down of endogenous biglycan in human urothelial carcinoma cells (J82 cells) increased proliferation, whereas addition of recombinant biglycan and overexpression of biglycan inhibited tumor cell proliferation. In line with this growth-inhibitory effect of biglycan, transplantation of J82 cells after knock-down of biglycan resulted in significantly increased growth of subcutaneous xenograft tumors in nude mice in vivo. Furthermore, treatment with two anti-proliferative, multi-receptor tyrosine kinase inhibitors—sunitinib and sorafenib—strongly upregulated biglycan expression. Collectively, the experimental data suggest that high biglycan expression is associated with reduced tumor cell proliferation. In accordance, Kaplan-Meier analysis revealed higher 10-year survival in patients with high biglycan mRNA expression in tumor biopsies.

Conclusion

In conclusion, the present data suggest that biglycan is an endogenous inhibitor of bladder cancer cell proliferation that is upregulated in response to anti-proliferative tyrosine kinase inhibitors. In addition, high biglycan expression is associated with favorable prognosis.  相似文献   

10.
Bladder cancer is the most common malignancy with high recurrence. Currently, the long noncoding RNAs (lncRNAs) have been suggested to play vital roles in the pathogenesis of bladder cancer. The present study investigated the role of lncRNA MIR503 host gene (MIR503HG) in the pathogenesis of bladder cancer by using both in vitro and in vivo functional assays. The expression of MIR503HG was downregulated in bladder cancer tissues and cell lines. Low expression of MIR503HG was associated with advanced tumor stage, advanced histological grade, and lymph node metastasis. Ectopic expression of MIR503HG inhibited cell proliferation, cell growth, cell invasion, and migration, and also promoted cell apoptosis and inhibited cell cycle progression in SW780 cells. In parallel, T24 cells were used for loss-of-function studies. Knockdown of MIR503HG promoted the cancer cell proliferation and increased the migration and invasion abilities of T24 cells. In addition, knockdown of MIR503HG reduced the cell apoptotic rate in cancer cells and promoted cell cycle progression. Furthermore, MIR503HG overexpression decreased the epithelial-mesenchymal transition-related mRNA and protein levels of ZEB1, Snail, N-cadherin, and vimentin, with an increase in E-cadherin level. Consistently, knockdown of MIR503HG showed the opposite effects. In vivo xenograft, nude mice results showed that overexpression of MIR503HG suppressed the tumor growth and tumor metastasis. In conclusion, our results identified a novel lncRNA MIR503HG that exhibited significant antiproliferation, antimigration/invasion effects on bladder cancer cells both in vitro and in vivo, which may hold a therapeutic promise to treat bladder cancer.  相似文献   

11.
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.  相似文献   

12.
The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness.

The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC.

Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer.  相似文献   

13.
Abnormal lipid metabolism has been commonly observed in various human cancers, including colorectal cancer (CRC). The mitochondrial citrate carrier SLC25A1 (also known as mitochondrial citrate/isocitrate carrier, CIC), has been shown to play an important role in lipid metabolism regulation. Our bioinformatics analysis indicated that SLC25A1 was markedly upregulated in CRC. However, the role of SLC25A1 in the pathogenesis and aberrant lipid metabolism in CRC remain unexplored. Here, we found that SLC25A1 expression was significantly increased in tumor samples of CRC as compared with paired normal samples, which is associated with poor survival in patients with CRC. Knockdown of SLC25A1 significantly inhibited the growth of CRC cells by suppressing the progression of the G1/S cell cycle and inducing cell apoptosis both in vitro and in vivo, whereas SLC25A1 overexpression suppressed the malignant phenotype. Additionally, we demonstrated that SLC25A1 reprogrammed energy metabolism to promote CRC progression through two mechanisms. Under normal conditions, SLC25A1 increased de novo lipid synthesis to promote CRC growth. During metabolic stress, SLC25A1 increased oxidative phosphorylation (OXPHOS) to protect protects CRC cells from energy stress-induced cell apoptosis. Collectively, SLC25A1 plays a pivotal role in the promotion of CRC growth and survival by reprogramming energy metabolism. It could be exploited as a novel diagnostic marker and therapeutic target in CRC.Subject terms: Colon cancer, Colon cancer  相似文献   

14.
Urinary bladder cancer (UBC) ranks ninth in worldwide cancer. In Egypt, the pattern of bladder cancer is unique in that both the transitional and squamous cell types prevail. Despite much research on the topic, it is still difficult to predict tumor progression, optimal therapy and clinical outcome. The reduced folate carrier (RFC/SLC19A1) is the major transport system for folates in mammalian cells and tissues. RFC is also the primary means of cellular uptake for antifolate cancer chemotherapeutic drugs, however, membrane transport of antifolates by RFC is considered as limiting to antitumor activity. The purpose of this study was to compare the mRNA expression level of RFC/SLC19A1 in urothelial and non-urothelial variants of bladder carcinomas. Quantification of RFC mRNA in the mucosa of 41 untreated bladder cancer patients was performed using RT-qPCR. RFC mRNA steady-state levels were ∼9-fold higher (N = 39; P<0.0001) in bladder tumor specimens relative to normal bladder mRNA. RFC upregulation was strongly correlated with tumor type (urothelial vs. non-urothelial; p<0.05) where median RFC mRNA expression was significantly (p<0.05) higher in the urothelial (∼14-fold) compared to the non-urothelial (∼4-fold) variant. This may account for the variation in response to antifolate-containing regimens used in the treatment of either type. RFC mRNA levels were not associated with tumor grade (I, II and III) or stage (muscle-invasive vs. non-muscle invasive) implying that RFC cannot be used for prognostic purposes in bladder carcinomas and its increased expression is an early event in human bladder tumors pathogenesis. Further, RFC can be considered as a potential marker for predicting response to antifolate chemotherapy in urothelial carcinomas.  相似文献   

15.
Caveolin-1 (Cav-1) is the primary structural component of caveolae and is implicated in the processes of vesicular transport, cholesterol balance, transformation, and tumorigenesis. Despite an abundance of data suggesting that Cav-1 has transformation suppressor properties both in vitro and in vivo, Cav-1 is expressed at increased levels in human prostate cancer. To investigate the role of Cav-1 in prostate cancer onset and progression, we interbred Cav-1(-/-) null mice with a TRAMP (transgenic adenocarcinoma of mouse prostate) model that spontaneously develops advanced prostate cancer and metastatic disease. We found that, although the loss of Cav-1 did not affect the appearance of minimally invasive prostate cancer, its absence significantly impeded progression to highly invasive and metastatic disease. Inactivation of one (+/-) or both (-/-) alleles of Cav-1 resulted in significant reductions in prostate tumor burden, as well as decreases in regional lymph node metastases. Moreover, further examination revealed decreased metastasis to distant organs, such as the lungs, in TRAMP/Cav-1(-/-) mice. Utilizing prostate carcinoma cell lines (C1, C2, and C3) derived from TRAMP tumors, we also showed a positive correlation between Cav-1 expression and the ability of these cells to form tumors in vivo. Furthermore, down-regulation of Cav-1 expression in these cells, using a small interfering RNA approach, significantly reduced their tumorigenic and metastatic potential. Mechanistically, we showed that loss or down-regulation of Cav-1 expression results in increased apoptosis, with increased prostate apoptosis response factor-4 and PTEN levels in Cav-1(-/-) null prostate tumors. Our current findings provide the first in vivo molecular genetic evidence that Cav-1 does indeed function as a tumor promoter during prostate carcinogenesis, rather than as a tumor suppressor.  相似文献   

16.
Staphylococcal nuclease and Tudor domain containing 1 (SND1) is an evolutionarily conserved protein present in eukaryotic cells from protozoa to mammals. SND1 has gained importance because it is overexpressed in aggressive cancer cells and diverse primary tumors. Indeed, it is regarded as a marker of cancer malignity. A broad range of molecular functions and the participation in many cellular processes have been attributed to SND1, mostly related to the regulation of gene expression. An increasing body of evidence points to a relevant relationship between SND1 and lipid metabolism. In this review, we summarize the knowledge about SND1 and its molecular and functional relationship with lipid metabolism. We highlight that SND1 plays a direct role in the regulation of cholesterol metabolism by affecting the activation of sterol response element-binding protein 2 (SREBP2) and we propose that that might have implications in the response of lipid homeostasis to stress situations.  相似文献   

17.
Changes in the expression of integrins and cadherins might contribute to the progression, invasion and metastasis of transitional cell cancer of the bladder and of melanomas. The expression of alpha5 (P < 0.001), alpha2 and beta1 (P < 0.05 - P < 0.001) integrin subunits in melanoma cells from noncutaneous metastatic sites (WM9, A375) were significantly increased as compared to cutaneous primary tumor (WM35) and metastatic (WM239) cell lines. These differences might be ascribed to the invasive character of melanoma cells and their metastasis to the noncutaneous locations. The significantly heterogeneous expression of beta1 integrin subunit in two malignant bladder cancer cell lines (T24 and Hu456) and nonsignificant differences in the expression of alpha2, alpha3, and alpha5 subunits between malignant and non-malignant human bladder cell lines do not allow an unanimous conclusion on the role of these intergrin subunits in the progression of transitional cancer of bladder. The adhesion molecule, expressed in all studied melanoma and bladder cell lines, that reacted with anti-Pan cadherin monoclonal antibodies was identified as N-cadherin except in the HCV29 non-malignant ureter cell line. However, neither this nor any other bladder or melanoma cell line expressed E-cadherin. The obtained results imply that the replacement of E-cadherin by N-cadherin accompanied by a simultaneous increase in expression of alpha2, alpha3 and alpha5 integrin subunits clearly indicates an increase of invasiveness of melanoma and, to a lesser extent, of transitional cell cancer of bladder. High expression of N-cadherin and alpha5 integrin subunit seems to be associated with the most invasive melanoma phenotype.  相似文献   

18.
19.
Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.  相似文献   

20.
《Genomics》2021,113(4):2122-2133
This study aimed to investigate the function of OCT3/4 on tumor immune escape in bladder cancer. Initially, the expression of OCT3/4, TET1, NRF2 and MDM2 was quantified in tumor tissues and cells, followed by gain- or loss-of-function studies to define their roles in cell migration, invasion and apoptosis and tumorigenicity in nude mice. Bladder cancer presented with abundant expression levels of OCT3/4, TET1, NRF2 and MDM2. We found that OCT3/4 promoted TET1 expression via binding to its promoter and that TET1 recruited MLL protein to NRF2 promoter and upregulated its expression, while NRF2 enhanced MDM2 expression. Upregulated MDM2 accelerated tumor immune escape in bladder cancer in mice. OCT3/4 knockdown suppressed the cell migration and invasion while inducing apoptosis, and consequently prevented tumor growth and immune escape in mice. Collectively, OCT3/4 may promote the progression of tumor immune escape in bladder cancer through acting as a promoter of the TET1/NRF2/MDM2 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号