首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: During periods of human expansion into new environments, recognition of bitter natural toxins through taste may have conferred an important selective advantage. The G protein-coupled receptor encoded by TAS2R16 mediates response to salicin, amygdalin, and many bitter beta-glucopyranosides. beta-glucopyranosides are ubiquitous in nature, with many having a highly toxic cyanogenic activity. RESULTS: We examined evidence for natural selection on the human receptor TAS2R16 by sequencing the entire coding region, as well as part of the 5' and 3' UTRs, in 997 individuals from 60 human populations. We detected signatures of positive selection, indicated by an excess of evolutionarily derived alleles at the nonsynonymous site K172N and two linked sites and significant values of Fay and Wu's H statistics in 19 populations. The estimated age range for the common ancestor of the derived N172 variant is 78,700-791,000 years, placing it in the Middle Pleistocene and before the expansion of early humans out of Africa. Using calcium imaging in cells expressing different receptor variants, we showed that N172 is associated with an increased sensitivity to salicin, arbutin, and five different cyanogenic glycosides. CONCLUSION: We have detected a clear signal of positive selection at the bitter-taste receptor gene TAS2R16. We speculate that the increased sensitivity that is shown toward harmful cyanogenic glycosides and conferred by the N172 allele may have driven the signal of selection at an early stage of human evolution.  相似文献   

2.
Bitter taste receptors (TAS2Rs) enable animals to detect and avoid toxins in the environment, including noxious defense compounds produced by plants. This suggests that TAS2Rs are under complex pressures from natural selection. To investigate these pressures, we examined signatures of selection in the primate TAS2R38 gene. Whole-gene (1,002 bp) sequences from 40 species representing all major primate taxa uncovered extensive variation. Nucleotide substitutions occurred at 448 positions, resulting in 201 amino acid changes. Two single-nucleotide deletions, one three-nucleotide in-frame deletion, and one premature stop codon were also observed. The rate of non-synonymous substitution (ω = dN/dS), was high in TAS2R38 (ω = 0.60) compared to other genes, but significantly lower than expected under neutrality (P = 4.0 × 10(-9)), indicating that purifying selection has maintained the basic structure of the receptor. However, differences were present among receptor subregions. Non-synonymous rates were significantly lower than expected in transmembrane domains (ω = 0.55, P = 1.18 × 10(-12)) and internal loops (ω = 0.51, P = 7.04 × 10(-5)), but not external loops (ω = 1.16, P = 0.53), and evidence of positive selection was found in external loop 2, which exhibited a high rate (ω = 2.53) consistent with rapid shifts in ligand targeting. These patterns point to a history of rapid yet constrained change in bitter taste responses in the course of primate evolution.  相似文献   

3.
Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.  相似文献   

4.
Pronin AN  Xu H  Tang H  Zhang L  Li Q  Li X 《Current biology : CB》2007,17(16):1403-1408
Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.  相似文献   

5.
Bitter taste perception evolved as a key detection mechanism against the ingestion of bioactive substances, and is mediated by TAS2R gene family members in vertebrates. The most widely known and best studied bitter substance is phenylthiocarbamide (PTC), which is recognized by TAS2R38 and has a molecular structure similar to that of glucosinolates contained in Brassica plants. The “non-taster” phenotypic polymorphism (i.e., not sensitive to PTC-containing foods) has been identified in many primates, including humans. Here, we report genetic and behavioral evidence for the existence of “non-taster” Japanese macaques, which originated from a restricted region of Japan. Comparison of the sequences of the TAS2R38 gene of 333 Japanese and 55 rhesus macaques suggested that this genotype appeared after the divergence of these two species, independently of the appearance of human and chimpanzee “non-tasters”. This finding might give a clue for elucidating the ecological, evolutionary, and neurobiological aspects of bitter taste perception of primates, as related to the plants that they sometimes use as foods in their habitats.  相似文献   

6.

Background

Umami and sweet tastes are two important basic taste perceptions that allow animals to recognize diets with nutritious carbohydrates and proteins, respectively. Until recently, analyses of umami and sweet taste were performed on various domestic and wild animals. While most of these studies focused on the pseudogenization of taste genes, which occur mostly in carnivores and species with absolute feeding specialization, omnivores and herbivores were more or less neglected. Catarrhine primates are a group of herbivorous animals (feeding mostly on plants) with significant divergence in dietary preference, especially the specialized folivorous Colobinae. Here, we conducted the most comprehensive investigation to date of selection pressure on sweet and umami taste genes (TAS1Rs) in catarrhine primates to test whether specific adaptive evolution occurred during their diversification, in association with particular plant diets.

Results

We documented significant relaxation of selective constraints on sweet taste gene TAS1R2 in the ancestral branch of Colobinae, which might correlate with their unique ingestion and digestion of leaves. Additionally, we identified positive selection acting on Cercopithecidae lineages for the umami taste gene TAS1R1, on the Cercopithecinae and extant Colobinae and Hylobatidae lineages for TAS1R2, and on Macaca lineages for TAS1R3. Our research further identified several site mutations in Cercopithecidae, Colobinae and Pygathrix, which were detected by previous studies altering the sensitivity of receptors. The positively selected sites were located mostly on the extra-cellular region of TAS1Rs. Among these positively selected sites, two vital sites for TAS1R1 and four vital sites for TAS1R2 in extra-cellular region were identified as being responsible for the binding of certain sweet and umami taste molecules through molecular modelling and docking.

Conclusions

Our results suggest that episodic and differentiated adaptive evolution of TAS1Rs pervasively occurred in catarrhine primates, most concentrated upon the extra-cellular region of TAS1Rs.
  相似文献   

7.
Taste perception in animals affects feed intake and may influence production traits. In particular, bitter is sensed by receptors encoded by the family of TAS2R genes. In this research, using a DNA pool‐seq approach coupled with next generation semiconductor based target resequencing, we analysed nine porcine TAS2R genes (TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, TAS2R38 and TAS2R39) to identify variability and, at the same time, estimate single nucleotide polymorphism (SNP) allele frequencies in several populations and testing differences in an association analysis. Equimolar DNA pools were prepared for five pig breeds (Italian Duroc, Italian Landrace, Pietrain, Meishan and Casertana) and wild boars (5–10 individuals each) and for two groups of Italian Large White pigs with extreme and divergent back fat thickness (50 + 50 pigs). About 1.8 million reads were obtained by sequencing amplicons generated from these pools. A total of 125 SNPs were identified, of which 37 were missense mutations. Three of them (p.Ile53Phe and p.Trp85Leu in TAS2R4; p.Leu37Ser in TAS2R39) could have important effects on the function of these bitter taste receptors, based on in silico predictions. Variability in wild boars seems lower than that in domestic breeds potentially as a result of selective pressure in the wild towards defensive bitter taste perception. Three SNPs in TAS2R38 and TAS2R39 were significantly associated with back fat thickness. These results may be important to understand the complexity of taste perception and their associated effects that could be useful to develop nutrigenetic approaches in pig breeding and nutrition.  相似文献   

8.
We have performed a comprehensive evaluation of single-nucleotide polymorphisms (SNPs) and haplotypes in the human TAS1R gene family, which encodes receptors for sweet and umami tastes. Complete DNA sequences of TAS1R1-, TAS1R2-, and TAS1R3-coding regions, obtained from 88 individuals of African, Asian, European, and Native American origin, revealed substantial coding and noncoding diversity: polymorphisms are common in these genes, and polymorphic sites and SNP frequencies vary widely in human populations. The genes TAS1R1 and TAS1R3, which encode proteins that act as a dimer to form the umami (glutamate) taste receptor, showed less variation than the TAS1R2 gene, which acts as a dimer with TAS1R3 to form the sweet taste receptor. The TAS1R3 gene, which encodes a subunit common to both the sweet and umami receptors, was the most conserved. Evolutionary genetic analysis indicates that these variants have come to their current frequencies under natural selection during population growth and support the view that the coding sequence variants affect receptor function. We propose that human populations likely vary little with respect to umami perception, which is controlled by one major form of the receptor that is optimized for detecting glutamate but may vary much more with respect to sweet perception.  相似文献   

9.
Umami is a pleasant savoury taste imparted by glutamate, a type of amino acid, and ribonucleotides, including inosinate and guanylate, which occur naturally in many foods including meat, fish, vegetables and dairy products. A heterodimer of TAS1R1 and TAS1R3 is known to function as umami taste receptor in humans. To address the association between genetic polymorphism of TAS1R1 / TAS1R3 genes and individual difference in umami taste sensitivity, we have examined the entire coding region of these genes using PCR-mediated direct sequencing analysis. A total of 11 SNPs were identified from 98 unrelated Korean individuals and were in Hardy-Weinberg Equilibrium. Four out of 11 SNPs were found in the exons and two of them were nonsynonymous ones. These coding SNPs (cSNPs), p.A372T in TAS1R1 and p.C757R in TAS1R3 genes, were common in Koreans, so these will be useful resource for further studies to find a functional allele for individual variation to umami taste sensitivity in our population.  相似文献   

10.
It has been proposed that the functional ACTN3*R577X polymorphism might have evolved due to selection in Eurasian human populations. To test this possibility we surveyed all available population-based data for this polymorphism and performed a comprehensive evolutionary analysis of its genetic diversity, in order to assess the action of adaptive and random mechanisms on its variation across human geographical distribution. The derived 577X allele increases in frequency with distance from Africa, reaching the highest frequencies on the American continent. Positive selection, detected by an extended haplotype homozygosisty test, was consistent only with the Eurasian data, but simulations with neutral models could not fully explain the results found in the American continent. It is possible that particularities of Native American population structure could be responsible for the observed allele frequencies, which would have resulted from a complex interaction between selective and random factors.  相似文献   

11.
Clinally varying traits in Drosophila melanogaster provide good opportunities for elucidating the genetic basis of adaptation. Resistance to ethanol, a natural component of D. melanogaster's breeding sites, increases with latitude on multiple continents, indicating that the trait is under selection. Although the well-studied Alcohol dehydrogenase (Adh) polymorphism makes a contribution to the clines, it accounts for only a small proportion of the phenotypic variation. We describe an amino acid replacement polymorphism in Aldehyde dehydrogenase (Aldh), the gene encoding the second enzyme in the ethanol degradation pathway, that shows hallmarks of also contributing to the clines. The derived Aldh allele, like the Adh-Fast allele, increases in frequency in laboratory populations selected for ethanol resistance, and increases in frequency with latitude in wild populations. Moreover, strains with the derived allele have significantly higher ALDH enzyme activity with acetaldehyde (the breakdown product of ethanol) as a substrate than strains with the ancestral allele. As is the case with the Adh-Fast allele, chromosomes with the derived Aldh allele show markedly reduced molecular variation in the vicinity of the replacement polymorphism compared to those with the ancestral allele, suggesting a single, relatively recent origin. Nonetheless, the Aldh polymorphism differs from the Adh polymorphism in that the ethanol-associated allele remains in relatively low frequency in most populations. We present evidence that this is likely to be the result of a trade-off in catalytic activity, with the advantage of the derived allele in acetaldehyde detoxification being offset by a disadvantage in detoxification of other aldehydes.  相似文献   

12.
Variation in responsiveness to bitter-tasting compounds has been associated with differences in alcohol consumption. One strong genetic determinant of variation in bitter taste sensitivity is alleles of the TAS2R gene family, which encode chemosensory receptors sensitive to a diverse array of natural and synthetic compounds. Members of the TAS2R family, when expressed in the gustatory system, function as bitter taste receptors. To better understand the relationship between TAS2R function and alcohol consumption, we asked if TAS2R variants are associated with measures of alcohol consumption in a head and neck cancer patient cohort. Factors associated with increased alcohol intake are of strong interest to those concerned with decreasing the incidence of cancers of oral and pharyngeal structures. We found a single nucleotide polymorphism (SNP) located within the TAS2R13 gene (rs1015443 [C1040T, Ser259Asn]), which showed a significant association with measures of alcohol consumption assessed via the Alcohol Use Disorders Identification Test (AUDIT). Analyses with other SNPs in close proximity to rs1015443 suggest that this locus is principally responsible for the association. Thus, our results provide additional support to the emerging hypothesis that genetic variation in bitter taste receptors can impact upon alcohol consumption.  相似文献   

13.
Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the 'taster' variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait.  相似文献   

14.
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.  相似文献   

15.
Allele and genotype frequencies of the VNTR polymorphism in the third exon of human DRD4 gene were determined in 544 individuals living in Russia (Russians, Bashkirs, Tatars, and Mordovians) and in the neighboring countries (Kazakhs and Ukrainians). The data obtained were compared with the allele frequency distribution patterns reported for the populations of Eurasia. Similarly to other Eurasian populations, in our population samples R4 allele was prevalent (64 to 87%). The frequency of this allele in the populations of Western Europe constitute 61 to 71%, while in the populations of Asia it varies from 74 to 96%. In this respect, the populations studied occupied the intermediate position. In the samples examined the R7 allele frequency decreased from 7% in Ukrainians to 1% in Bashkirs, while in Kazakhs and Mordovians the allele was absent. This finding was consistent with the R7 allele distribution pattern in the populations of Eurasia, characterized by higher frequency in the West and lower frequency or absence of the allele in the East. In the group of 22 Eurasian populations, the R7 allele frequency negatively correlated with the frequency of the R4 allele (r = -0.86 at P < 0.001). Unlike the R4 and R7 alleles, the frequency of which changed in the eastward direction, the R2 allele frequency distribution displayed slightly expressed latitudinal increase southwards. The DRD4 genotype distribution deviated from the equilibrium in most of the samples examined. In some samples, statistically significant increase of the R2/R2 homozygotes frequency was demonstrated. One of the possible explanations of this phenomenon is assortative mating with respect to phenotypic (behavioral) allele manifestation. The data obtained can serve as the basis for the investigation of the possible role of the DRD4 alleles as the risk factors for the development of alcoholism and other types of addictions.  相似文献   

16.
Kooyers NJ  Olsen KM 《Molecular ecology》2012,21(10):2455-2468
White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species.  相似文献   

17.
To probe the role of natural selection in species origin, we performed a DNA polymorphism survey of the Drosophila melanogaster desaturase2 (ds2) locus. ds2 is responsible for a cuticular hydrocarbon difference between two behaviorally isolated races--Zimbabwe (Z) and Cosmopolitan (M). The ds2 allele prevalent in the Z populations is functional, while the allele from the M populations harbors a 16-bp deletion upstream of the gene which knocks out its expression. We find a signature of positive selection in the ds2 promoter, but not in the control gene, sas. This signature appears to be confined to the derived M population. We also find that the selection has been recent because the gene retains a signature of a selective sweep evidenced by the departure of Fay and Wu's H test from neutral expectation. We also find that ds2, as well as its duplicate pair ds1, has been maintained in the Drosophila genus for at least 40 Myr without any sign of adaptive change. Taken together with previous molecular genetic evidence, our results suggest that ds2 is one of the genes responsible for adaptive divergence of the Z and M races of D. melanogaster.  相似文献   

18.
Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.  相似文献   

19.
Determining the genetic basis of environmental adaptation is a central problem of evolutionary biology. This issue has been fruitfully addressed by examining genetic differentiation between populations that are recently separated and/or experience high rates of gene flow. A good example of this approach is the decades-long investigation of selection acting along latitudinal clines in Drosophila melanogaster. Here we use next-generation genome sequencing to reexamine the well-studied Australian D. melanogaster cline. We find evidence for extensive differentiation between temperate and tropical populations, with regulatory regions and unannotated regions showing particularly high levels of differentiation. Although the physical genomic scale of geographic differentiation is small--on the order of gene sized--we observed several larger highly differentiated regions. The region spanned by the cosmopolitan inversion polymorphism In(3R)P shows higher levels of differentiation, consistent with the major difference in allele frequencies of Standard and In(3R)P karyotypes in temperate vs. tropical Australian populations. Our analysis reveals evidence for spatially varying selection on a number of key biological processes, suggesting fundamental biological differences between flies from these two geographic regions.  相似文献   

20.
Arctic charr, a highly plastic salmonid that inhabits the circumpolar region, colonized its current environment after the last glaciation. Recent colonization limits the capacity of many techniques to define and characterize constituent populations. As a novel approach, we used the major histocompatibility (MH) class IIalpha gene polymorphism as a marker that would characterize the genetic divergence of global Arctic charr populations caused by drift and by local adaptation to pathogens. We were able to detect significant isolation of all the lineages previously defined by mitochondrial DNA sequencing and also isolation of some populations within those groups. We found that most of the polymorphism of the class IIalpha gene was distributed globally, which indicates ancestral selection; however, in most cases, distinctive allele frequencies and specific haplotypes distinguished each population suggesting that recent selection has also occurred. Although all studied populations showed similar MH class IIalpha polymorphisms, we also found variation in which particular amino acid positions were polymorphic and which were constant in the different populations studied. This variation provides a greater adaptive capacity for the MH class IIalpha receptors in Arctic charr and is yet another illustration of the extraordinary plasticity of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号