共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo. 相似文献
2.
Nørgaard P Westphal V Tachibana C Alsøe L Holst B Winther JR 《The Journal of cell biology》2001,152(3):553-562
PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines the essentiality of protein disulfide isomerase-catalyzed oxidation. Most mutant combinations show defects in carboxypeptidase Y folding as well as in glycan modification. There are, however, no significant effects on ER-associated protein degradation in the various protein disulfide isomerase-deleted strains. 相似文献
3.
Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms 总被引:2,自引:0,他引:2
Singh AK Bhattacharyya-Pakrasi M Pakrasi HB 《The Journal of biological chemistry》2008,283(23):15762-15770
The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth. 相似文献
4.
Rubotham J Woods K Garcia-Salcedo JA Pays E Nolan DP 《The Journal of biological chemistry》2005,280(11):10410-10418
Proteins from the endocytic pathway in bloodstream forms of Trypanosome brucei are modified by the addition of linear poly-N-acetyllactosamine side chains, which permits their isolation by tomato lectin affinity chromatography. Antibodies against this tomato lectin binding fraction were employed to screen a cDNA expression library from bloodstream forms of T. brucei. Two cDNAs were prominent among those selected. These cDNAs coded for two putative protein disulfide isomerases (PDIs) that respectively contained one and two double-cysteine redox-active sites and corresponded to a single domain PDI and a class 1 PDI. Assays of the purified recombinant proteins demonstrated that both proteins possess isomerase activity, but only the single domain PDI had a reducing activity. These PDIs possess a number of unusual features that distinguish them from previously characterized PDIs. The expression of both is developmentally regulated, they both co-localize with markers of the endocytic pathway, and both are modified by N-glycosylation. The larger PDI possesses N-glycans containing poly-N-acetyllactosamine, a modification that is indicative of processing in the Golgi and suggests the presence of a novel trafficking pathway for PDIs in trypanosomes. Although generally PDIs are considered essential, neither activity appeared to be essential for the growth of trypanosomes, at least in vitro. 相似文献
5.
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions. 相似文献
6.
Phytobilins are linear tetrapyrrole precursors of the light-harvesting prosthetic groups of the phytochrome photoreceptors of plants and the phycobiliprotein photosynthetic antennae of cyanobacteria, red algae, and cryptomonads. Previous biochemical studies have established that phytobilins are synthesized from heme via the intermediacy of biliverdin IX alpha (BV), which is reduced subsequently by ferredoxin-dependent bilin reductases with different double-bond specificities. By exploiting the sequence of phytochromobilin synthase (HY2) of Arabidopsis, an enzyme that catalyzes the ferredoxin-dependent conversion of BV to the phytochrome chromophore precursor phytochromobilin, genes encoding putative bilin reductases were identified in the genomes of various cyanobacteria, oxyphotobacteria, and plants. Phylogenetic analyses resolved four classes of HY2-related genes, one of which encodes red chlorophyll catabolite reductases, which are bilin reductases involved in chlorophyll catabolism in plants. To test the catalytic activities of these putative enzymes, representative HY2-related genes from each class were amplified by the polymerase chain reaction and expressed in Escherichia coli. Using a coupled apophytochrome assembly assay and HPLC analysis, we examined the ability of the recombinant proteins to catalyze the ferredoxin-dependent reduction of BV to phytobilins. These investigations defined three new classes of bilin reductases with distinct substrate/product specificities that are involved in the biosynthesis of the phycobiliprotein chromophore precursors phycoerythrobilin and phycocyanobilin. Implications of these results are discussed with regard to the pathways of phytobilin biosynthesis and their evolution. 相似文献
7.
Hiroyuki Mukaiyama Hideki Tohda Kaoru Takegawa 《Applied microbiology and biotechnology》2010,86(4):1135-1143
Although the fission yeast Schizosaccharomyces pombe has been used for high-level heterologous protein production, the productivity of secreted human serum transferrin (hTF)
has been low, presumably, because the protein harbors twenty disulfide bonds and two N-glycosylation sites. In the present study, we found that overexpression of endogenous putative protein disulfide isomerase
(PDI) improved productivity. Whole genome sequence analysis of S. pombe revealed five putative PDI genes and overexpression of two of them, SPAC17H9.14c and SPBC3D6.13c (SpPdi2p or SpPdi3p, respectively),
significantly improved the productivity of secreted hTF. GFP-fused SpPdi2p and SpPdi3p were found to localize to the endoplasmic
reticulum. Co-overexpression of SpPdi2p or SpPdi3p with hTF coupled with modifications to the growth medium reported in our
previous study were able to increase the level of secreted hTF approximately 30-fold relative to conventional conditions. 相似文献
8.
We have identified 24 members of the DnaK subfamily of heat shock 70 proteins (Hsp70s) in the complete genomes of 5 diverse photosynthetic eukaryotes. The Hsp70s are a ubiquitous protein family that is highly conserved across all domains of life. Eukaryotic Hsp70s are found in a number of subcellular compartments in the cell: cytoplasm, mitochondrion (MT), chloroplast (CP), and endoplasmic reticulum (ER). Although the Hsp70s have been the subject of intense study in model organisms, very little is known of the Hsp70s from early diverging photosynthetic lineages. The sequencing of the complete genomes of Thalassiosira pseudonana (a diatom), Cyanidioschyzon merolae (a red alga), and 3 green algae (Chlamydomonas reinhardtii, Ostreococcus lucimarinus, Ostreococcus tauri) allow us to conduct comparative genomics of the Hsp70s present in these diverse photosynthetic eukaryotes. We have found that the distinct lineages of Hsp70s (MT, CP, ER, and cytoplasmic) each have different evolutionary histories. In general, evolutionary patterns of the mitochondrial and endoplasmic reticulum Hsp70s are relatively stable even among very distantly related organisms. This is not true of the chloroplast Hsp70s and we discuss the distinct evolutionary patterns between "green" and "red" plastids. Finally, we find that, in contrast to the angiosperms Arabidopsis thaliana and Oryza sativa that have numerous cytoplasmic Hsp70, the 5 algal species have only 1 cytoplasmic Hsp70 each. The evolutionary and functional implications of these differences are discussed. 相似文献
9.
Clissold PM Bicknell R 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(6):603-611
Although protein disulphide isomerase (PDI) has been known for nearly 40 years, several new PDIs have recently been described that reveal a remarkable diversity in both structure and function. This article reviews our current knowledge of the PDI family members and identifies four novel PDIs in the human genome. These include human transmembrane proteins that have C. elegans or Drosophila orthologues for which a developmental role has been proven. Their role in development, together with other functional roles for PDIs such as conferring resistance to apoptosis under hypoxia and a potential role in the oxygen-sensing apparatus are discussed. 相似文献
10.
Streptomycetes possess peptidyl-prolyl cis-trans isomerases that strongly resemble cyclophilins from eukaryotic organisms 总被引:2,自引:0,他引:2
Andreas Pahl Monika Ühlein Holger Bang Wilhelm Schlumbohm Ullrich Keller 《Molecular microbiology》1992,6(23):3551-3558
A functionally active 17.5 kDa peptidyl-prolyl cis-trans isomerase was purified to homogeneity from Streptomyces chrysomallus, a Gram-positive filamentous bacterium. Characterization of the enzyme revealed inhibition and binding characteristics, against the immunsuppressive drug cyclosporin A, which were similar to cyclophilins from eukaryotes such as mammals, plants, fungi and yeasts, but different from those of cyclophilins from enterobacteria such as Escherichia coli. The amino acid sequence of the S. chrysomallus cyclophilin, as deduced from the gene sequence, revealed a striking degree of amino acid sequence identity with the corresponding 17 kDa proteins of humans (66%), Neurospora (70%) and yeast (69%). Comparison with cyclophilin sequences from the Gram-negative enterobacteria revealed much less homology (25% identity with E. coli b, 23% identity with E. coli a). Cyclophilin was detected in each of the four other Streptomyces species tested. The cyclophilins from the various streptomycetes differed in size, varying between 17 and 20.5 kDa. The cyclophilins were abundant in the Streptomyces cells, and present throughout growth. 相似文献
11.
Disturbance of endoplasmic reticulum (ER) proteostasis is observed in Prion-related disorders (PrDs). The protein disulfide isomerase ERp57 is a stress-responsive ER chaperone up-regulated in the brain of Creutzfeldt-Jakob disease patients. However, the actual role of ERp57 in prion protein (PrP) biogenesis and the ER stress response remained poorly defined. We have recently addressed this question using gain- and loss-of-function approaches in vitro and animal models, observing that ERp57 regulates steady-state levels of PrP. Our results revealed that ERp57 modulates the biosynthesis and maturation of PrP but, surprisingly, does not contribute to the global cellular reaction against ER stress in neurons. Here we discuss the relevance of ERp57 as a possible therapeutic target in PrDs and other protein misfolding disorders. 相似文献
12.
S. S. Shishkin L. S. Eremina L. I. Kovalev M. A. Kovaleva 《Biochemistry. Biokhimii?a》2013,78(13):1415-1430
This review considers the major features of human proteins AGR2 and ERp57/GRP58 and of other members of the protein disulfide isomerase (PDI) family. The ability of both AGR2 and ERp57/GRP58 to catalyze the formation of disulfide bonds in proteins is the parameter most important for assigning them to a PDI family. Moreover, these proteins and also other members of the PDI family have specific structural features (thioredoxin-like domains, special C-terminal motifs characteristic for proteins localized in the endoplasmic reticulum, etc.) that are necessary for their assignment to a PDI family. Data demonstrating the role of these two proteins in carcinogenesis are analyzed. Special attention is given to data indicating the presence of biomarker features in AGR2 and ERp57/GRP58. It is now thought that there is sufficient reason for studies of AGR2 and ERp57/GRP58 for possible use of these proteins in diagnosis of tumors. There are also prospects for studies on AGR2 and ERp57/GRP58 leading to developments in chemotherapy. Thus, we suppose that further studies on different members of the PDI family using modern postgenomic technologies will broaden current concepts about functions of these proteins, and this will be helpful for solution of urgent biomedical problems. 相似文献
13.
Xiyin Wang Udo Gowik Haibao Tang John E Bowers Peter Westhoff Andrew H Paterson 《Genome biology》2009,10(6):R68-18
Background
Sorghum is the first C4 plant and the second grass with a full genome sequence available. This makes it possible to perform a whole-genome-level exploration of C4 pathway evolution by comparing key photosynthetic enzyme genes in sorghum, maize (C4) and rice (C3), and to investigate a long-standing hypothesis that a reservoir of duplicated genes is a prerequisite for the evolution of C4 photosynthesis from a C3 progenitor. 相似文献14.
Overexpression of thiol/disulfide isomerases enhances membrane fusion directed by the Newcastle disease virus fusion protein 总被引:2,自引:1,他引:1
Newcastle disease virus (NDV) fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. We have previously shown that free thiols are present in cell surface-expressed NDV F protein and that blocking the production of free thiols by thiol-disulfide exchange inhibitors inhibited the membrane fusion mediated by F protein (J Virol. 81:2328-2339, 2007). Extending these observations, we evaluated the role of the overexpression of two disulfide bond isomerases, protein disulfide isomerase (PDI) and ERdj5, in cell-cell fusion mediated by NDV glycoproteins. The overexpression of these isomerases resulted in significantly increased membrane fusion, as measured by syncytium formation and content mixing. The overexpression of these isomerases enhanced the production of free thiols in F protein when expressed without hemagglutination-neuraminidase (HN) protein but decreased free thiols in F protein expressed with HN protein. By evaluating the binding of conformation-sensitive antibodies, we found that the overexpression of these isomerases favored a postfusion conformation of surface-expressed F protein in the presence of HN protein. These results suggest that isomerases belonging to the PDI family catalyze the production of free thiols in F protein, and free thiols in F protein facilitate membrane fusion mediated by F protein. 相似文献
15.
Kamauchi S Wadahama H Iwasaki K Nakamoto Y Nishizawa K Ishimoto M Kawada T Urade R 《The FEBS journal》2008,275(10):2644-2658
Protein disulfide isomerase family proteins play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill. cv Jack). The cDNAs encode proteins of 525 and 551 amino acids, named GmPDIL-1 and GmPDIL-2, respectively. Recombinant versions of GmPDIL-1 and GmPDIL-2 expressed in Escherichia coli exhibited oxidative refolding activity for denatured RNaseA. Genomic sequences of both GmPDIL-1 and GmPDIL-2 were cloned and sequenced. The comparison of soybean genomic sequences with those of Arabidopsis, rice and wheat showed impressive conservation of exon-intron structure across plant species. The promoter sequences of GmPDIL-1 apparently contain a cis-acting regulatory element functionally linked to unfolded protein response. GmPDIL-1, but not GmPDIL-2, expression was induced under endoplasmic reticulum-stress conditions. GmPDIL-1 and GmPDIL-2 promoters contain some predicted regulatory motifs for seed-specific expression. Both proteins were ubiquitously expressed in soybean tissues, including cotyledon, and localized to the endoplasmic reticulum. Data from coimmunoprecipitation experiments suggested that GmPDIL-1 and GmPDIL-2 associate with proglycinin, a precursor of the seed storage protein glycinin, and the alpha'-subunit of beta-conglycinin, a seed storage protein found in cotyledon cells under conditions that disrupt the folding of glycinin or beta-conglycinin, suggesting that GmPDIL-1 and GmPDIL-2 are involved in the proper folding or quality control of such storage proteins as molecular chaperones. 相似文献
16.
Functional analysis of protein disulfide isomerases in blood feeding, viability and oocyte development in Haemaphysalis longicornis ticks 总被引:1,自引:0,他引:1
Liao M Boldbaatar D Gong H Huang P Umemiya R Harnnoi T Zhou J Tanaka T Suzuki H Xuan X Fujisaki K 《Insect biochemistry and molecular biology》2008,38(3):285-295
Three protein disulfide isomerases from Haemaphysalis longicornis ticks (designated as HlPDI-1, HlPDI-2, and HlPDI-3) were previously identified. In order to further analyze their biological functions, the dsRNA of each HlPDI gene and one dsRNA combination of HlPDI-1/HlPDI-3 were separately injected into female ticks. Reduction of gene and protein expression of HlPDIs by RNA interference (RNAi) was demonstrated by real-time PCR, RT-PCR and Western blot analysis. In single dsRNA-injected groups, HlPDI-1 RNAi impacted tick blood feeding and oviposition, HlPDI-2 RNAi impacted tick viability and HlPDI-3 RNAi had no significant impact by itself. However, the injection of a combination of HlPDI-1/HlPDI-3 dsRNA had synergistic effects on tick viability. Furthermore, the midgut and cuticle were severely damaged in HlPDI-2 dsRNA-injected ticks and HlPDI-1/HlPDI-3 dsRNA-injected ticks, respectively, and disruption of HlPDI genes led to a significant reduction of disulfide bond-containing vitellogenin (Vg) expression in ticks. These results indicate that PDIs from H. longicornis are involved in blood feeding, viability and oocyte development, probably by mediating the formation of disulfide bond-containing proteins of the ticks and the formation of basement membrane and cuticle components such as extracellular matrix (ECM). This is the first report on the functional analysis of PDI family molecules as well as the interactions of PDI and other molecules in blood-feeding arthropods. 相似文献
17.
G Tufo A W E Jones Z Wang J Hamelin N Tajeddine D D Esposti C Martel C Boursier C Gallerne C Migdal C Lemaire G Szabadkai A Lemoine G Kroemer C Brenner 《Cell death and differentiation》2014,21(5):685-695
Intrinsic and acquired chemoresistance are frequent causes of cancer eradication failure. Thus, long-term cis-diaminedichloroplatine(II) (CDDP) or cisplatin treatment is known to promote tumor cell resistance to apoptosis induction via multiple mechanisms involving gene expression modulation of oncogenes, tumor suppressors and blockade of pro-apoptotic mitochondrial membrane permeabilization. Here, we demonstrate that CDDP-resistant non-small lung cancer cells undergo profound remodeling of their endoplasmic reticulum (ER) proteome (>80 proteins identified by proteomics) and exhibit a dramatic overexpression of two protein disulfide isomerases, PDIA4 and PDIA6, without any alteration in ER-cytosol Ca2+ fluxes. Using pharmacological and genetic inhibition, we show that inactivation of both proteins directly stimulates CDDP-induced cell death by different cellular signaling pathways. PDIA4 inactivation restores a classical mitochondrial apoptosis pathway, while knockdown of PDIA6 favors a non-canonical cell death pathway sharing some necroptosis features. Overexpression of both proteins has also been found in lung adenocarcinoma patients, suggesting a clinical importance of these proteins in chemoresistance. 相似文献
18.
N. V. Karapetyan 《Origins of life and evolution of the biosphere》1975,6(1-2):253-256
It is generally accepted that two photosystems function successively in photosynthetic electron transport chain of plants and algae. The interaction of these photosystems results in the enhancement of photosynthesis. It was suggested that only one photosystem is present in purple bacteria, the most primitive photosynthetic organisms. The functioning of this photosystem is accompanied by absorption changes at 890 nm. Recently new spectral changes were found inChromatium chromatophores under reductive conditions, more favorable for bacterial growth. Some of that spectral changes take place even atliquid nitrogen temperature. It is proposed these absorption changes could be related to other photosystem functioning in low potential region. Such a photosystem is necessary for reduction of NAD inChromatium, for which the reverse electron transport to NAD was not shown. In contrast to photosystems of plants, the bacterial photosystems appear to function independently because the enhancement of bacterial photosynthesis is not found. Apparently the evolution of photosystems involved interaction between independent photosystems, one of them functioning under more oxidative conditions. 相似文献
19.
Secretory proteins become folded and acquire stabilizing disulfide bonds in the endoplasmic reticulum (ER). Correct disulfide bond formation is a key step in ER quality control (ERQC). Proteins with incorrect disulfide bonds are recognized by the quality control machinery and are retrotranslocated into the cytosol where they are degraded by the proteasome. The mammalian ER contains 17 disulfide isomerases and at least one of them, ERp57, works in conjunction with the ER lectin-like chaperones calnexin and calreticulin. The targeting of ERp57 to calnexin-calreticulin is mediated by its noncatalytic b' domain, and analogous domains in other disulfide isomerases likely determine their substrate and partner preferences. This review discusses some explanations for the multiplicity of disulfide isomerases and highlights structural differences in the b' domains of PDI and ERp57 as an example of how noncatalytic domains define specialized roles in oxidative folding. 相似文献
20.
Cecilia Gotor Eloísa Pajuelo Luís C. Romero Antonio J. Márquez José M. Vega 《Archives of microbiology》1990,153(3):230-234
Polyclonal antiserum specific for ferredoxin-nitrite reductase (EC 1.7.7.1) from the green alga Chlamydomonas reinhardii recognized the nitrite reductase from other green algae, but did not cross-react with the corresponding enzyme from different cyanobacteria or higher plant leaves. An analogous situation was also found for ferredoxin-glutamate synthase (EC 1.4.7.1), using its specific antiserum. Besides, the antibodies raised against C. reinhardii ferredoxin-glutamate synthase were able to inactivate the ferredoxin-dependent activity of nitrite reductase from green algae.These results suggest that there exist similar domains in ferredoxin-nitrite reductases and ferredoxin-glutamate synthases from green algae. In addition, both types of enzymes share common antigenic determinants, probably located at the ferredoxin-binding domain. In spite of their physicochemical resemblances, no apparent antigenic correlation exists between the corresponding enzymes from green algae and those from higher plant leaves or cyanobacteria.Abbreviations Fd
ferredoxin
- GOGAT
glutamate synthase
- MV+
reduced methyl viologen (radical cation)
- NiR
nitrite reductase
- PMSF
phenylmethylsulphonyl fluoride
- SDS
sodium dodecyl sulfate 相似文献