首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blood samples were collected after mating from four female one-humped camels every 10 min for 9-12 h. Luteinizing hormone (LH) was quantified in plasma by radioimmunoassay using antibovine LH. Of the seven observed matings, five were followed by a release of LH, and three by an ovulation (indicated by a subsequent secretion of progesterone). LH levels at the time of mating ranged from 0.7 to 3 ng/ml. When an LH response occurred, the levels increased 1 h after mating and reached a maximum in 2-3 h (ranging from 2.9 to 19.1 ng/ml). A decrease in LH was observed starting 6 h after mating and lasting for 6 h. These results are in agreement with a coitus-induced mechanism of ovulation in the one-humped camel (Camelus dromedarius). They confirm and extend the observations reported in the bactrian camel (Camelus bactrianus).  相似文献   

2.
The purpose of this study was to determine the temporal relationship of peak levels of oestradiol (E2), LH and progesterone to ovulation and sex skin deturgescence in the baboon. A total of 55 baboons were used in these studies. Hormonal levels were measured in 47 cycles and ovulation was documented by laparoscopic examination in 26 of these cycles. A temporal relationship of ovulation to sex skin deturgescence was established in 57 cycles. The mean interval from E2 peak to ovulation was 41.4±2.3 hr, the interval from E2 peak to LH peak was 17.3±2.0 hr and that from LH peak to ovulation was 18.4±2.0 hr. Eleven baboons showed an LH peak on the day of the E2 peak. The number of days to the first sign of sex skin deturgescence after ovulation was 2.07±0.14 days (range 0–5 days). Nineteen cycles (33.3%) showed sex skin deturgescence 1 day after ovulation, another 19 cycles (33.3%) showed sex skin deturgescence 2 days after ovulation, and only 13 cycles (22.8%) showed sex skin deturgescence 3 days after ovulation. Sex skin deturgescence was observed on day 0, 4 or 5 postovulation in only two baboons.  相似文献   

3.
Ovulation in light-estrous rats induced by darkness   总被引:1,自引:0,他引:1  
Adult female rats show continual vaginal cornification and cease ovulation a few weeks after they are exposed to continuous lighting (light-estrous rats). When these rats were placed in the darkness for 10 hr, 80% of the animal ovulated approximately 46 hr later. Peripheral LH increased to a small peak immediately after placing in darkness concomitant with a decrease in pituitary LH content; a large peak, 20 times higher than the basal LH level, was observed at 20 to 22 hr. Progesterone concentration in ovarian vein blood remained at extremely low levels while estrogen levels tended to rise after small LH peak. This estrogen rise appeared to play an important role in inducing the main LH peak. Simulation of the small LH peak by low doses of exogenous LH succeeded in inducing ovulation of light-estrous rats in similar fashion to the exposure of light-estrous rats to 10-hr darkness. Therefore, the small amount of LH secretion observed after the initiation of the darkness-treatment may be considered as a trigger for the whole sequence of hormonal changes leading to ovulation.  相似文献   

4.
A series of experiments focused on the masculine coital behaviors controlling pituitary luteinizing hormone (LH) secretion and reflex ovulation in the estrous female ferret. An initial experiment investigated which coital stimuli from the male are required to induce ovulation. It was found that corpus luteum formation, which served as an index of ovulation, occurred in estrous female ferrets only if the male achieved a penile intromission. Neck gripping, mounting, and pelvic thrusting behavior without intromission by the male failed to induce ovulation. A second experiment investigated the timing and magnitude of the coitus-induced LH surge associated with ovulation. Blood was obtained via jugular catheters from estrous females in various mating situations. Plasma LH concentrations were measured by a heterologous radioimmunoassay that was validated for use in the ferret. A significant surge in plasma LH occurred only when an intromission was achieved by the stud male. Plasma LH was significantly elevated 2.0 h after the introduction of the male, peak values were reached 6.0 h later, and this elevation lasted on average 5.7 hours (5/5 females). No LH rise occurred in 2/2 female ferrets in which only neck gripping, mounting, and pelvic thrusting, but no intromission, were allowed to occur. The ferret mating pattern and the resultant LH response differ from those seen in three other induced ovulators (cat, vole, and rabbit) in which the male's intromission latency and duration are much shorter than in the ferret, and in which a distinctive peak in plasma LH often occurs within 1 h after mating.  相似文献   

5.
Preovulatory cow follicles (n = 34) were collected at different times after the onset of oestrus until shortly before ovulation. In-vitro conversion of tritiated pregnenolone in the presence of NAD+ by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) a moderate conversion into progesterone occurred, but it was subsidiary to that into 17 alpha-hydroxypregnenolone and other unidentified steroids. During phases 1 (0-6 h after the LH peak), 2A (6-14 h) and 2B (14-20 h) the production of progesterone and 17 alpha-hydroxypregnenolone remained constant; at phase 2B the percentage of remaining pregnenolone was higher than in the preceding phases. In phase 3 (20 h after the LH peak until ovulation) conversion into progesterone had increased about 4-fold to the highest levels observed (97% after 2 h incubation), and production of 17 alpha-hydroxypregnenolone and unidentified steroids was low. In an additional experiment, homogenates of the wall of 3 follicles at phase 3 were also incubated with tritated progesterone in the presence of NADPH. The percentage of remaining progesterone was high, and a moderate conversion into 17 alpha-hydroxyprogesterone occurred. In the main experiments, however, production of this steroid was not observed. The results indicate that steroid synthesis in the preovulatory follicle of the cow changes to the production of progesterone shortly before ovulation.  相似文献   

6.
Dalin  A. M.  Nanda  T.  Hultén  F.  Einarsson  S. 《Acta veterinaria Scandinavica》1995,36(3):377-382
In 6 multiparous crossbred sows (2nd to 4th parity, Swedish Landrace x Swedish Yorkshire), 15 proosestrous-oestrous periods during 2 oestrous cycles were studied after weaning. The animals were controlled for oestrus, and the follicular growth and ovulation in their ovaries were followed by transrectal ultrasonography. Blood was sampled through indwelling catheters for analyses of LH and progesterone (P4). The duration of oestrus (standing reflex) was 47 ± 12.4 h, and the interval from onset of standing reflex until the end of ovulation was 39 ± 12.4 h (range 20-64 h). The LH peak concentration was 3.7 ± 0.8 μg/1, and the interval from LH peak level until ovulation was 23 ± 8.4 h (range 8-32 h). The onset of standing reflex occurred in average 13 h before the LH peak level (range -4 - +36 h). The peripheral plasma concentration of P4 showed a normal cyclic pattern in all animals. Low levels (mean levels, 1.1-1.3 nmol/1) were seen during prooestrus and oestrus, high mean levels were found on days 10-16 (45-75 nmol/1) in the oestrous cycle. It was concluded that for an accurate determination of ovulation, each animal has to be examined repeatedly. Ultrasonography is a most valuable tool for this purpose.  相似文献   

7.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

8.
The purpose of this investigation was to study the role played by prostaglandins in advanced ovulation and in the formation of luteinized unruptured follicles (LUF) in cyclic female rats. Dose related effects on ovulation were observed in rats given LH on diestrus 2 at 16.30. A significant positive correlation was observed between the number of postovulatory corpora lutea (POCL) and the increasing doses of LH. By contrast the number of LUF was negatively correlated with LH. Indomethacin treatment by 6h30 after administration of an ovulatory LH dose significantly increased the occurrence of LUF at the expense of POCL. Conversely PGF2 alpha when administered by 6h30 after a subovulatory LH stimulation enhanced in a dose dependent manner the number of POCL with respect to the LH treated controls. Under a similar treatment with a subovulatory dose of LH, PGE2 remained without ovulatory effects. The mechanisms of the formation of LUF are discussed on the basis of these results.  相似文献   

9.
Baril G  Vallet JC 《Theriogenology》1990,34(2):303-311
Alpine dairy goats were induced to superovulate at the end of a progestagen treatment with porcine follicle stimulating hormone (pFSH) during the breeding season (n = 10 goats) and out of the breeding season (n = 10 goats). Occurrence of estrus and of the luteinizing hormone (LH) peak were checked every 4 h. Ovulations were determined every 6 h by ovarian laparoscopic examination. Among the parameters studied, the mean interval from sponge removal to the onset of estrus did not differ whatever the season of treatment, but the variability was higher for females treated out of the breeding season. Ovulations began during the laparoscopic control period for nine of ten goats during the breeding season vs seven of ten goats out of the breeding season. For these 16 females, on which the LH peak and beginning of ovulation were known, the season did not affect the intervals between the onset of estrus and the LH peak and between the LH peak and the beginning of ovulation. When ovulations are observed by laparoscopy every 6 h, for any given goat 54.9% of total ovulations (counted 7 d after estrus) occurs in less than 6 h, and 87.1% in less than 12 h. Although the interval between the LH peak and the ovulation is quite constant, the additive variabilities of the intervals between the sponge removal and the onset of estrus and between the onset of estrus and the LH peak precluded the determination of an optimal time for artificial insemination (AI) by timing sponge removal or onset of estrus.  相似文献   

10.
The purpose of this investigation was to study the role played by prostaglandins in advanced ovulation and in the formation of luteinized unrupted follicles (LUF) in cyclic female rats. Dose related effects on ovulation were observed in rats given LH on diestrus 2 at 16.30. A significant positive correlation was observed between the number of postovulatory corpura lutea (POCL) and the increasing doses of LH. By contrast the number of LUF was negatively correlated with LH. Indomethacin treatment by 6h30 after administration of an ovulatory LH dose significantly increased the occurence of LUF at the expense of POCL. Conversely PGF when admiststered by 6h30 after a subovulatory LH stimulation enhanced in a dose dependent manner the number of POCL with respect to the LH treated controls. Under a similar treatment with a subovulatory dose of LH, PGE2 remained without ovulatory effects. The mechanisms of the formation of LUF are discussed on the basis of these results.  相似文献   

11.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

12.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

13.
The objective of the study was to determine the timing of ovulation in relation to onset of estrus and the preovulatory LH peak in yaks. For this purpose, a sensitive LH enzymeimmunoassay previously established in buffaloes was successfully validated for measuring the hormone in yak plasma. Plasma LH and progesterone were estimated from blood samples collected from eight non-lactating cycling yaks at 2 h intervals after estrus onset until 6 h after ovulation (ovulation was confirmed by palpation of ovaries per rectum). The mean+/-S.E.M. preovulatory plasma LH peak was 10.11+/-0.35 ng/ml with the values ranging from 8.75 to 11.51 ng/ml in individual yaks. The mean+/-S.E.M. duration of the LH surge was 7.25+/-0.55 h with a range of 6-10 h. Onset of LH surge (mean+/-S.E.M.) occurred 3.0+/-0.65 h after the onset of estrus. Mean plasma progesterone stayed low (<0.25 ng/ml) during the entire duration of sampling. Ovulation occurred 30.5+/-0.82 h (range, 28-34 h) after the onset of estrus and 20.25+/-1.03 h after the end of LH surge. The occurrence of the LH peaks within a narrow time frame of 4-8h post estrus onset in yaks could have contributed to the animals ovulating within a narrow time interval.  相似文献   

14.
The effect of intramammary (IMM) or intravenous (IV) administration of E. coli endotoxin (LPS), at the onset of estrus, at the time of ovulation was examined. Steroid and gonadotropin concentrations around ovulation were also determined. Lactating Holstein cows (n=33) were assigned to saline-controls (n=12) and treated with LPS-IV (0.5mug/kg; n=13) or LPS-IMM (10mug; n=8). Synchronized cows were observed continuously for estrus. LPS (or saline) was injected within 30min from the onset of standing estrus, at peak estradiol concentrations. The typical rise of body temperature, somatic cell count, cortisol, and NAGase activity was noted. One-third of both LPS-IV- and LPS-IMM-treated cows were manifested by an extended estrus to ovulation (E-O) interval of around 75h or did not ovulate, compared with about 30h in the other 2/3 of LPS cows and all controls. Estradiol concentrations 24h before and after LPS did not differ between groups. However, LPS-IV cows with extended intervals exhibited another estrus and an additional rise of estradiol followed by delayed ovulation. LPS-treated cows with a delayed E-O interval had low or delayed LH surge; two LPS-treated cows did not exhibit LH surge and did not ovulate. All control cows exhibited normal hormone levels. Delayed ovulation was associated with a delayed rise of luteal progesterone. The results indicated that exposing cows to endotoxin during estrus induced a decreased and delayed LH surge in one-third of the cows. This was associated with delayed ovulation, which reduces the chances of successful fertilization.  相似文献   

15.
Preovulatory bovine follicles (n = 28) were collected at different times after the onset of standing oestrus until shortly before ovulation. In-vitro conversion of tritiated androstenedione in the presence of NADPH by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) conversion into oestradiol-17 beta was high and production of oestrone was about 8-fold lower. During phases 1 (0-6 h after the LH peak) and 2A (6-14 h after the LH peak) the production of oestradiol and oestrone remained constant; the percentage of remaining androstenedione increased. In phase 2B (14-20 h after the LH peak) conversion into oestradiol and oestrone had decreased to about one third correlating with a higher percentage of remaining androstenedione. In phase 3 (20 h after the LH peak until ovulation) conversion into oestradiol and oestrone remained constant. The ratio between the production of oestrone and oestradiol remained constant throughout the phases of preovulatory development (0.13), indicating a concurrent inhibition of aromatase and 17 beta-hydroxysteroid dehydrogenase activities. Conversion into 19-hydroxyandrostenedione showed a pattern similar to that of oestradiol, and testosterone was produced in minute quantities. The results indicate that in preovulatory bovine follicles eventual inhibition of aromatization takes place at about 14 h after the preovulatory LH peak.  相似文献   

16.
The objectives of this experiment were to determine the effects of 0.5 mg estradiol benzoate, administered intramuscularly 24 h after removal of CIDR-B progesterone containing intravaginal devices, on the time to estrus, ovulation and peak LH concentration in dairy heifers. Ovulatory responses and plasma LH concentrations were examined using 14 Friesian dairy heifers in 2 separate treatment periods. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10-mg estradiol benzoate capsule for 12 d. Within each period, 24 h after CIDR-B removal, 7 heifers received an intramuscular injection of 0.5 mg estradiol benzoate while the remaining 7 heifers received an intramuscular injection of a placebo. Blood samples for LH assay were collected at 0, 6 and 12 h, and then every 4 h for 60 h after estradiol injection. Detection of estrus was conducted at 4-h intervals, and ultrasonographical examination to detect ovulation was conducted every 8 h for 88 h after removal of the CIDR-B device. Treatment with estradiol benzoate tended to reduce the time from device removal to the LH peak in Period 1 (median time to LH peak 40.1 vs 63.9 h; P = 6.07). In Period 2, treatment with estradiol had no significant effect on the time to the LH peak, standing estrus or ovulation. We hypothesize that the period effect was due to the stage of cycle at the time of treatment. For heifers treated in Period 1, the stage of cycle was random. However, because of the prior synchronization of estrus, which was implicit in the experimental design, heifers in Period 2 tended to be in late diestrus. The administration of estradiol benzoate after treatment with exogenous progesterone appears to overcome the variability in timing of LH peaks typically occurring in a herd of synchronized heifers due to different stages of follicular development.  相似文献   

17.
Luteinizing hormone requirements for ovulation induction were studied in proestrous rats through detailed observation of the preovulatory surge, through various forms of LH injection under sodium pentobarbital blockade, and through estimation of LH uptake by the ovary. Blood LH levels in individual proestrous rats were obtained every 30 min and grouped according to their peak time (designated 0 h); mean LH levels higher than 7 and 5 ng/ml continued for 30 min and 2.5 h, respectively, the pituitary LH contents at 1400 and 2000 h on the day of proestrus were 2.1 and 0.7 micrograms, respectively, indicating that the amount of LH secreted during the surge was at least 1.4 micrograms. Single intravenous injections of 2 micrograms and 1 micrograms of pure rat LH (NIDDK-rLH-I-7; FSH and prolactin contaminations: 0.02% and less than 0.01%, respectively) to sodium pentobarbital-blocked rats induced ovulation in 4 out of 4 rats and 4 out of 6 rats, respectively, while 500 ng failed to induce ovulation in any (out of 7) rats. Two injections of 300 ng each with an interval of 20 min induced ovulation in 3 out of 8 rats, but if the interval was prolonged to between 30 and 120 min, 100% ovulation was obtained. Blood LH levels in these experiments indicated that a lower long-lasting LH level (about 5 ng/ml blood) is more important than a short, high level for ovulation induction. It was also shown that this level of LH could be given in separate doses if the interval was 30-120 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Sarkar M  Prakash BS 《Theriogenology》2005,63(9):2494-2503
The objective of this study was to test the efficacy of estrus synchronization in yaks using the Ovsynch protocol. To eight non-lactating cycling yaks were administered GnRH analogue followed by PGF(2alpha) analogue treatment 7 days later and further injected with a second injection of same GnRH analogue 2 days after the PGF(2alpha) analogue administration. Ovulation was detected by rectal palpation at 2 h intervals from the initial signs of estrus till ovulation. For LH and progesterone the blood samples were collected at 15 min intervals starting from 1 h prior to the second injection of GnRH analogue until 6 h later and further at 2 h intervals till 2 h after the ovulation. Ovulation was detected in seven out of eight yaks after Ovsynch treatment. The mean time interval from the second GnRH injection to ovulation was 24.8+/-1.95 h with a range of 20-34 h and the mean interval from the LH peak and ovulation was 19.96+/-1.91 h with a range of 14-29 h. The high degree of ovulation synchronization could be attributed to the highly synchronized LH peaks in the treated animals. It was concluded that this estrus synchronization protocol could be applied for fixed time AI in yak.  相似文献   

19.
This study was designed to describe the follicular population present on the canine ovary (Canis familiaris) during the preovulatory period and essentially the changes in oocyte size, mucification, and chromatin configuration occurring from before the luteinizing hormone (LH) surge up to postovulation. In a first experiment, ovaries of beagle bitches were collected before (n = 21) or after LH surge but before ovulation (post-LH surge/preovulation stage, n = 24) as determined using hormone (LH, estradiol, progesterone) assays and ultrasonography. All large (>2 mm) follicles were measured and punctured. The numbers of oocytes collected per follicle and the degree of cumulus mucification were recorded. In a second experiment, ovaries were similarly collected before (n = 13) and after the LH surge but before ovulation (n = 11) as well as after ovulation as determined by ultrasonography (n = 9). Chromatin configuration of the oocytes was observed by DNA staining and confocal microscopy. In Experiment 1, before the LH peak, an average of 13.5 ± 0.7 follicles per bitch (total 284 follicles) were detected, and the maximal follicle diameter reached 6.5 mm. Large follicles were observed already in this period of the cycle and as early as when progesterone was still below 0.5 ng/mL. After the LH peak but before ovulation, 11.0 ± 0.7 follicles were present (total 264 follicles). Fully mucified cumulus cells were observed only in follicles larger than 4 mm. Multi-oocytic follicles represented 7% (before LH peak) and 4% (after LH peak) of the follicular population. In Experiment 2, all the oocytes were at the germinal vesicle (GV) stage, but three chromatin configurations could be distinguished: diffuse, partly grouped, and fully grouped chromatin. The proportion of oocytes with fully grouped chromatin increased with the follicular diameter and the time in estrus, the maximum being observed after the LH peak. These results suggest that (1) before LH peak, follicles are already of large diameter, similar to the ones at ovulation; (2) the ability for cumulus mucification is acquired during the late steps of follicular growth; (3) three GV patterns may be observed during the periovulatory period.  相似文献   

20.
《Theriogenology》1996,45(8):1561-1567
The influence of ovarian status (presence of a corpora lutea and follicles) on the times of the onset of estrus, LH peak and ovulation rate at a synchronized estrus was evaluated in 73 Alpine and Saanen cyclic goats. Does were treated for 11 d with 3 mg norgestomet implants or 45mg fluorogestone acetate (FGA) sponges. They also received 400 IU of PMSG and 50 μg of a PGF analog on Day 9 of progestagen priming. Follicles (1 to 7 mm) and corpora lutea (CL) were counted by laparoscopy on Days 0 and 9 of progestagen treatment and 5 or 6 d after the synchronized estrus. Estrus was detected every 4 h from 16 to 60 h after the end of progestagen treatment using a vasectomized buck. The LH concentration was determined by radioimmunoassay (RIA) in blood samples collected every 4 h for 24 h beginning at the time of the onset of estrus. The number of follicles on Days 0 and 9 of progestagen treatment was not related to the time of the onset of estrus and occurrence of the LH peak or to ovulation rate. The number of CL on Day 9 influenced the time of occurrence of the LH peak but not the time of the onset of estrus. Thus, in does with 2 or 3 CL on Day 9, the LH peak occurred at 46.9 h after the end of progestagen treatment, and in does with 1 or 0 CL at 42.2 and 42.5 h, respectively, after treatment, suggesting that the number of CL at luteolysis is a factor in the variability of response after the synchronization of estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号