首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enantioselective amidase from Rhodococcus erythropolis MP50 was purified to homogeneity. The enzyme has a molecular weight of about 480,000 and is composed of identical subunits with molecular weights of about 61,000. The NH2-terminal amino acid sequence was significantly different from previously published sequences of bacterial amidases. The purified amidase hydrolyzed a wide range of aliphatic and aromatic amides, The highest enzyme activities were found with amides carrying hydrophobic residues, such as pentyl or naphthoyl. The purified enzyme converted racemic 2-phenylpropionamide, naproxen amide [2-(6-methoxy-2-naphthyl) propionamide], and ketoprofen amide [2-(3'-benzoylphenyl)propionamide] to the corresponding S-acids with an enantiomeric excess of >99% and an almost 50% conversion of the racemic amides. The enzyme also hydrolyzed different alpha-amino amides but without significant enantioselectivity.  相似文献   

2.
Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive.  相似文献   

3.
To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.  相似文献   

4.
We examined the hydration of amides of alpha(3)D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy ( approximately 50%-70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I' band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I' bands of the buried (13)C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4-7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 3(10)/alpha/pi-helical conformation.  相似文献   

5.
Several 3-nitro-4-(N-protected aminomethyl)benzoic acids; with protection provided by tert.-butyloxycarbonyl (Boc), 9-fluorenylmethyloxycarbonyl (Fmoc), trifluoroacetyl (Tfa), dithiasuccinoyl (Dts), or phthaloyl (Phth), have been prepared by reproducible routes. Synthesis of Dts-handle 6 illustrates some particularly novel and efficient chemistry, and is preferred over more intricate routes to Boc-handle 3 and Fmoc-handle 4. The five handles were each evaluated for their application to the synthesis of peptide amides. Coupling onto amino-functionalized supports provided a general starting point for peptide chain assembly. The handle amino function was deblocked (Boc, Fmoc, Dts), the C-terminal residue was coupled as its N alpha-protected free acid, and ultimately the ortho-nitrobenzylamide anchorage linkage was cleaved photolytically to give the corresponding amide. Starting with handles 3, 4, and 6, several free and protected peptide amides were synthesized.  相似文献   

6.
Antifungal amides from Piper arboreum and Piper tuberculatum   总被引:4,自引:0,他引:4  
In continuation of our study of the Piperaceae we have isolated several amides, mainly those bearing isobutyl, pyrrolidine, dihydropyridone and piperidine moieties. Bioactivity-guided fractionation of extracts from leaves of Piper arboreum yielded two new amides, N-[10-(13,14-methylenedioxyphenyl)-7(E),9(Z)-pentadienoyl]-pyrrolidine (1), arboreumine (2) together with the known compounds N-[10-(13,14-methylenedioxyphenyl)-7(E)-pentaenoyl]-pyrrolidine (3) and N-[10-(13,14-methylenedioxyphenyl)-7(E),9(E)-pentadienoyl]-pyrrolidine (4). Catalytic hydrogenation of 3 yielded the amide N-[10-(13,14-methylenedioxyphenyl)-pentanoyl]-pyrrolidine (5). We also have isolated six amides (6-11) and two antifungal cinnamoyl derivatives (12, 13) from seeds and leaves of Piper tuberculatum. Compounds 1-11 showed antifungal activity as determined by direct bioautography against Cladosporium sphaerospermum while compounds 3-4 and 6-13 also showed antifungal activity against C. cladosporioides.  相似文献   

7.
2,3,4,6-Tetra-O-acetyl-beta-D-glucopyranosyl- and 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl azides were transformed into the corresponding per-O-acetylated N-(beta-D-glycopyranosyl) amides via a PMe(3) mediated Staudinger protocol (generation of N-(beta-D-glycopyranosyl)imino-trimethylphosphoranes followed by acylation with carboxylic acids, acid chlorides or anhydrides). The deprotected compounds obtained by Zemplén deacetylation were evaluated as inhibitors of rabbit muscle glycogen phosphorylase b. The best inhibitor of this series has been N-(beta-D-glucopyranosyl) 3-(2-naphthyl)-propenoic amide (K(i)=3.5microM).  相似文献   

8.
9.
Several amide and ester derivatives of a glutamine analogue, N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (FMDP) (1-8), were synthesized and evaluated for the inhibitory activity in regard to glucosamine-6-phosphate synthase from Candida albicans. The syntheses were accomplished by the reaction of N2-tert-butoxycarbonyl-N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (BocFMDP) with the corresponding amines to give the FMDP amides (1-4) or with alkyl halides to give corresponding esters of FMDP (5-8). Among the synthesized compounds, the acetoxymethyl ester of FMDP was the most active inhibitor of the enzyme. Its IC50 value compared to that of FMDP (4 microM) was equal to 11.5 microM. The methyl and allyl esters and the N-hexyl-N-methyl-amide of FMDP exhibited a moderate enzyme inhibitory activity.  相似文献   

10.
The synthesis of a novel class of piperazine benzamide (reverse amides) targeting the human β3-adrenergic receptor for the treatment of overactive bladder (OAB) is described. The SAR studies directed towards maintaining well established β3 potency and selectivities while improving the overall pharmacokinetic profile in the reverse amide class will be evaluated. The results and consequences associated with functional activity at the norepinephrine transporter (NET) will also be discussed.  相似文献   

11.
The amide content of total proteins and protein fractions (alpha-, beta-, gamma-cristallins and albuminoid) from cortex and nuclear lens zones of cattle has been investigated. The amide content in proteins of cortex and nuclear lens of young animals (1,5-2 years old) is the same. The decrease of the amide content in the proteins of nuclear lenz zone of old animals (6-12 years old) is due to fraction of readily hydrolysed amides. The data obtained prove the posttranslational desamidation of lens proteins at ageing. beta-Cristallines--the proteins with the highest amides content is exposed to posttranslational desamidation most of all.  相似文献   

12.
C-terminal amidation is often a requisite structural feature for peptide hormone bio-activity. We report a chemical amidation method that converts peptide/protein thioesters into their corresponding C-terminal amides. The peptide/protein thioester is treated with 1-(2,4-dimethoxyphenyl)-2-mercaptoethyl auxiliary (1b) in a native chemical ligation (NCL) reaction to form an intermediate, which upon removal of the auxiliary with TFA, yields the peptide/protein amide. We have demonstrated the general utility of the approach by successfully converting several synthetic peptide thioesters to peptide amides with high conversion rates. Preliminary results of converting a recombinant peptide thioester to its amide form are also reported.  相似文献   

13.
Calpains are involved in a variety of calcium-regulated cellular processes, such as signal transduction, cell proliferation, differentiation, and apoptosis. Excessive calpain activation contributes to serious cellular damage and has been reported in many pathological conditions. 4-Quinolinone 2-carboxamide derivatives were prepared and evaluated for mu-calpain inhibitory activities. Of the compounds synthesized, 3a and 3k, which possess a primary amide and 4-methoxyphenethyl amide at P1' region, were found to most potently inhibit mu-calpain with IC50 values of 0.71+/-0.07 and 0.73+/-0.23 microM, respectively. On the other hand, the incorporation of pyridine-containing amides decreased inhibitory activity.  相似文献   

14.
Structure-activity relationships for the inhibition of thrombin and trypsin by N alpha-substituted amidinophenyl-alpha-aminoalkylcarboxylic acid amides are presented. Secondary cyclic amides of N alpha-substituted 4-amidinophenylalanine and 2-amino-5-(4-amidinophenyl)valeric acid were found to be potent and specific inhibitors of thrombin, whereas trypsin was inhibited strongly by primary amides of 2-amino-4-(4-amidinophenyl) butyric acid. For this type of inhibitor the carbon amide structure seems to play a decisive role in the enzyme-inhibitor interaction.  相似文献   

15.
Five muramyl dipeptide analogues synthesized by derivatization of gamma-carboxyl of D-isoglutamine residue of MDP into alkyl amides or incorporation of lysine residue at the site via epsilon-NH2 function were evaluated for immuno-adjuvant activity. Derivatization of gamma-carboxyl of D-isoglutamine into butyl, octyl and dibutyl residues stimulated delayed type of hypersensitivity (DTH) response, the maximum stimulation being observed with octyl amide. Introduction of lauryl amide residue abolished DTH response. The antibody response was impaired with all the alkyl amide analogues except for the lysyl amide derivative with which the response was higher than MDP. Correlation was observed between DTH response and macrophage migration.  相似文献   

16.
A homologous series of N-(3-methylbutyl)amides of normal saturated C14, C15, C16, C17 and C18 fatty acids were identified as major components of glandular trichome extracts from Medicago sativa G98A, an alfalfa genotype resistant to the potato leafhopper, Empoasca fabae. A second homologous series of N-(2-methylpropyl)amides of C14 through C18 normal fatty acids were minor components. Saturated free fatty acids C12, C13, C14, C15, C16, C17 and C18 were present in trace amounts, as was the N-(3-methylbutyl)amide of linoleic acid (C18:2). N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids, along with the N-(3-methylbutyl)amide of linoleic acid, were synthesized and bioassayed for leafhopper deterrence by applying the compounds to the surface of a sachet containing an artificial diet. Leafhoppers were then offered a two-way choice between diet surfaces treated with the synthetic amides or an untreated control. N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids did not deter leafhopper settling in a dose-dependent fashion. In contrast, when tested singly, N-(3-methylbutyl)amide of linoleic acid exhibited dose-dependent deterrence against leafhopper settling. Fatty acid amides localized in alfalfa glandular trichomes likely contribute to leafhopper resistance.  相似文献   

17.
15-Lipoxygenases are one of the nonheme iron-containing proteins with ability of unsaturated lipid peroxidation in animals and plants. The critical role of the enzymes in formation of inflammations, sensitivities and some of cancers has been demonstrated in mammalians. Importance of the 15-lipoxygenases leads to development of mechanistic studies, products analysis and synthesis of their inhibitors. In this work new series of the 3-allyl-4-allyoxyaniline amides and 3-allyl-4-prenyloxyaniline amides were designed, synthesized and their inhibitory potency against soybean 15-lipoxygenase were determined. Among the synthetic amides, 3-allyl-4-(farnesyloxy)-adamantanilide showed the most potent inhibitory activity by IC(50) value of 0.69μM. SAR studies showed that in spite of prenyl length increases, the effects of the amide size and its electronic properties on the inhibitory potency became predominant. The SAR studies was also showed that the orientation of allyl and prenyloxy moieties toward Fe core of the SLO active site pocket is the most suitable location for enzyme inhibition.  相似文献   

18.
Different resins were examined for their potential use in the solid phase synthesis of protected peptide amides using the 9-fluorenylmethoxycarbonyl (Fmoc) chemical protocol. The model protected peptide amide BocTyr-Gly-Gly-Phe-Leu-Arg(Pmc)NH2 (1) was synthesized on both the acid-labile 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)phenoxy resin (Rink amide resin) (2) and on resins containing the base-labile linker 4-hydroxymethylbenzoic acid. Of the resins examined only the methylbenzhydrylamine resin containing the 4-hydroxymethylbenzoic acid linkage, which was cleaved by ammonolysis in isopropanol, gave the model peptide 1 in good overall yield (53% including functionalization). Thus the synthesis of protected peptide amides by solid phase synthesis using Fmoc-protected amino acids with t-butyl-type side chain protecting groups is feasible. The choice of peptide-resin linkage and its cleavage conditions, however, are critical to the success of such syntheses. The potential application of this synthetic strategy to the preparation of novel peptide amides is discussed.  相似文献   

19.
The conversion of nitriles to amides is generally considered to be a hydrolytic process that does not involve redox chemistry. We demonstrate here that cytochrome P450 (CYP) is responsible for the conversion of the cyano group of pinacidil to the corresponding amide. The reaction in human liver microsomes was NADPH-dependent and was nearly completely inhibited by an anti-CYP3A4 antibody. Incubations of pinacidil with recombinant CYP enzymes confirm that CYP3A4 is the principal catalyst of this reaction. The kinetics of pinacidil amide formation by CYP3A4 yielded an apparent K(m) of 452 +/- 33 microM and k(cat) of 0.108 min(-1) (k(cat)/K(m) = 0.238 mM(-1).min(-1)). Incubation of pinacidil with CYP3A4 in the presence of (18)O(2) or H(2)(18)O showed that the amide carbonyl oxygen derived exclusively from molecular oxygen. The CYP3A4-mediated reaction also was supported by hydrogen peroxide when incubations were carried out in the absence of cytochrome P450 reductase and NADPH. The reaction can be explained by a nucleophilic attack of a deprotonated ferric peroxide intermediate (Fe(3+)-O-O(-)) on the carbon atom of the -C triple bond N triple bond to form an Enz-Fe(III)-O-O-C(=NH)R intermediate, followed by cleavage of the O-O bond to give pinacidil amide. This nucleophilic addition of an Fe(3+)-O-O(-) intermediate to a -C=N pi-bond in a P450 system resembles the analogous reaction catalyzed by the nitric oxide synthases.  相似文献   

20.
Larvae of several species of Lepidoptera produce fatty acid amide elicitors that induce the plants on which they feed to synthesize and release volatile organic compounds. The volatiles released by the plants act as cues that aid in host location by natural enemies of the herbivorous larvae. The elicitors are synthesized in the larvae by enzymes embedded in the membranes of the crop and anterior midgut tissues. The fatty acid precursors of the elicitors are obtained from the plants on which the caterpillars feed, while the amino acid moieties appear to be obtained from pools within the insects. The fatty acid amide elicitors are rapidly hydrolyzed in the midgut and hindgut by enzymes in the gut lumen. The role of these fatty acid amides in caterpillar metabolism is not yet understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号