首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

2.
Embryos were collected from superovulated ewes on Day 2 (2-8 cell), Day 4 (8-16 cell) and Day 6 (morula/early blastocyst). Two embryos were cultured in 1 ml of one of four media: (i) Ham's F10 + 4 mg bovine serum albumin (BSA)/ml, (ii) synthetic oviduct fluid medium + 20% human serum, (iii) Quinn's human tubal fluid medium (HTF) + 3 mg BSA/ml or (iv) HTF + 10% acid-treated fetal calf serum for 24 h. They were transferred to fresh media of the same type and their further development was monitored. A quantitative bioassay and radioimmunoassay was used to measure the concentration of platelet-activating factor (PAF, 1-o-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine) produced. Following extraction and partial purification, 21/95 (22.1%) of the embryo-conditioned media samples had PAF concentrations greater than that measured in corresponding control media. This was designated as embryo-derived PAF and the corresponding cultures were termed 'PAF-positive'. PAF was produced by embryos at all three developmental stages examined and in each of the four media used, and the average amount of PAF produced was 60.9 +/- 9.8 pmol/embryo/24 h. However, neither the developmental stage of the embryo, nor the type of media affected the proportion of PAF-positive cultures nor the amount of PAF produced during culture. Thus, it is demonstrated for the first time that early ovine embryos can secrete PAF in vitro, and that there is considerable variability in their capacity for PAF secretion.  相似文献   

3.
Oviductal factors may be obtained by ultrafiltration of conditioned medium, added to a simple media and used in bovine embryo culture. In this study, we aimed to analyze the development of bovine embryos produced with oviductal factors compared to those cultured in the presence of BSA or serum, the effects of glucose in presence of these protein supplements, and the ability of oviductal factors to support embryo development during the entire culture period. In vitro produced bovine zygotes from slaughterhouse ovaries were cultured in modified-synthetic oviduct fluid (mSOF) alone or supplemented with (1) oviductal factors, (2) BSA and (3) FCS. Oviductal factors showed embryotrophic activity, although with blastocyst rates lower than those in BSA and FCS. Glucose (1.5 mM) added at Day 2 of culture did not affect development in the presence of oviductal factors. The number of cells in expanded blastocysts was unaffected by the presence of glucose or any of the protein supplements used. Both BSA and FCS, respectively, improved blastocyst rates of Day 6 embryos produced with oviductal factors. The effect of oviductal factors was masked by the presence of BSA during the entire culture. FCS promoted an earlier appearance of blastocysts. It is concluded that the effect of glucose on in vitro embryo development depends upon the source of protein. Oviductal factors are not an appropriate supplement for embryos beyond Day 6 of culture in SOF, although blastocyst rates of such embryos may be increased by culturing them in the presence of FCS or BSA.  相似文献   

4.
The objective of the present study was to assess the in vitro viability of ovine embryos at different stages of development after combining cell sampling and vitrification. Precompacted morulae, compacted morulae and blastocysts were obtained from superovulated Sarda ewes at 4, 5 or 6 d following insemination. Embryo cell biopsy was carried out in a 100-microl drop of PBS + 10% fetal calf serum (FCS) with 10 micromol nocodazole and 7.5 microg/ml cytochalasin-b by aspiration (3-5 cells). Embryos were cryopreserved at room temperature after exposure of 2 solutions for 5 min, transferred into a vitrification solution, loaded into the center of 0.25-ml straws separated by air bubbles from 2 columns of sucrose 0.5 M and plunged immediately into liquid nitrogen. In Experiment 1, the in vitro viability of manipulated or vitrified embryos after in vitro co-culture in TCM 199 medium with 10% FCS and sheep oviductal epithelial cells (SOEC) in 5% CO2 humidified atmosphere in air at 39 degrees C was significantly lower (P < 0.05 and P < 0.01, respectively) at precompacted morula (60 and 30%) and compacted morula (62 and 39%) stages than intact embryos at the same stages (87 and 88%). No differences were found at the blastocyst stage. In Experiment 2, the in vitro survival rate of precompacted morulae which were manipulated and immediately vitrified was lower (P < 0.05) than in those manipulated and, after a temporary period of culture, vitrified at blastocyst stage (21 vs 48%); while no differences were found at compacted morula and blastocyst stages. The results show that 1) the stage of development influences the subsequent in vitro viability of manipulated and vitrified ovine embryos, 2) temporary culture after manipulation and before vitrification improves the in vitro viability of embryos, and 3) the hole in the zona pellucida resulting from biopsy does not affect blastocyst survival after subsequent vitrification.  相似文献   

5.
Control ovine oocytes matured and fertilized in vitro were transferred to intermediate recipient ewes. After 5 days, 59% of eggs were recovered. Thirty-one (38%) reached morula/blastocyst stage. Twenty-one embryos at the morula or blastocyst stage were transferred to six recipient ewes, resulting in five pregnancies, of which four were maintained. Nine lambs were born (43%). In the experiment, 72 ooctyes matured and fertilized in vitro were cocultured for 5 days with sheep oviductal epithelial cells. Thirty-one eggs (43%) developed to the noncompacted morula stage. Transfer of 26 embryos to 11 recipient ewes resulted in two pregnancies (18%). Two male lambs were born. The result indicates that the coculture of in vitro matured and fertilized ovine eggs with sheep oviductal epithelial cells throughout the preimplantation period is compatible with further development to term.  相似文献   

6.
A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.  相似文献   

7.
Rexroad CE  Wall RJ 《Theriogenology》1987,27(4):611-619
Three experiments were conducted to identify, sources of loss of fertilized single-cell sheep eggs microinjected with DNA. In the first experiment, immediate transfer of eggs into synchronous recipients resulted in 86% of embryos developing (>32 cells) at Day 7. Incubating eggs in microdrops of Ham's F-10 medium + 10% fetal calf serum for 5 h at 37 degrees C in an atmosphere of 95% air: 5% CO(2) before transfer reduced development (65% >32 cells). Removing eggs from drops for 30 min of microscopic inspection, simulating manipulation during microinjection, caused no additional reduction in development (63% >32 cells). However, injection of eggs with buffer was detrimental to subsequent development (42% >32 cells). In Experiment 2, injection of buffer or injection of DNA in buffer into the pronuclei before transfer of eggs into recipient ewes resulted in 29 and 19%, respectively, of embryos developing to >32 cells at Day 7. In Experiment 3, more eggs developed when held in 5 ml of medium than in microdrops (P = 0.07). No difference in development was found between eggs held in bicarbonate-buffered BMOC or in phosphate-buffered saline with added fetal bovine serum. The development of sheep eggs appears to be greatly reduced after microinjection, but until alternate procedures are found, a high rate of loss of injected eggs may be an unavoidable cost of inserting foreign genes into sheep.  相似文献   

8.
In this study multiple ovulation and embryo transfer (MOET) technology was tested as a method for increasing the number of offspring obtained from superovulated mouflons and then using Sardinian ewes as recipients. Two experiments were carried out over consecutive years. In Experiment 1, female mouflons received a standard superovulatory treatment during both breeding and anoestrous seasons. Sarda sheep, used as controls, received the same treatment. Mean superovulatory response (corpora lutea and large follicles) was higher in the domestic sheep than in the mouflons (4.8 vs. 10.1 and 4.2 vs. 8.8 in breeding and anoestrous seasons, respectively; P < 0.05). A high percentage of mouflons showed early luteal regression which negatively affected recovery rate (35% and 30% in mouflons vs. 69% and 71% in sheep) and the yield of embryos suitable for transfer (37% and 25% in mouflons vs 74% and 69% in sheep; P < 0.05). In Experiment 2, ten mouflons were treated by the same superovulatory protocol and divided into two groups. In the first (Group 5), embryos were recovered earlier by oviductal flushing and cultured in vitro with oviductal cells in CZB medium until the morula/blastocyst stage; in the second (Group 6), the usual embryo recovery time was followed. Recovery rate was higher in the former (89% vs. 31%; P < 0.01) than in the latter. After 4 days of culture, 53% of embryos reached compact morula or early blastocyst stage (16/30). Lambing rate was 57% for mouflon embryos transferred immediately and 56% for those cultured in vitro for 4 days; the lambing rate in the sheep control group was 71%. The length of gestation was longer in ewes carrying mouflons than in those carrying lambs (155 vs. 148 days).  相似文献   

9.
Sheep oocytes that matured and fertilized in vitro were cultured to evaluate their cleavage to the 8- to 16- cell stage and further development in five different media as follows: 1) CPMW (TCM199 + 20% ewe serum + 0.4% BSA), 2) Ham's F-10 + 10% ewe serum, 3) Brinster's pyruvate medium + 0.1% glucose (BPM-G), 4) co-culture with sheep oviduct epithelial cells in TCM199 + 10% fetal calf serum, and 5) co-culture with sheep granulosa cells in the same medium as 4. The culture duration was 4 or 7 d for 8- to 16-cell or further development. The proportions of 8- to 16-cell eggs were 1) 16% (8 49 ), 2) 25% (12 49 ), 3) 52% (58 112 ), 4) 63% (105 167 ) and 5) 45% (27 60 ). The co-culture with sheep oviduct cells resulted in a significantly (P < 0.05) higher rate of cleavage than the other media, except BPM-G. The proportion of noncompacted morula (35%, 24 68 ) was also significantly (P < 0.05) higher in the co-culture of sheep oviduct cells than the other media. The 8- to 16-cell eggs produced by BPM-G (n=38) and the co-culture with sheep oviduct cells (n=42) were transferred into the uterus of recipient ewes, but no elongated blastocysts were obtained 13 d later. On the other hand, 8 out of 55 one-cell eggs (15 to 18 h after in vitro insemination) transferred to the oviduct of recipient ewes were elongated blastocysts (24% of 34 recovered eggs). The data show that the co-culture of in vitro fertilized eggs with sheep oviduct epithelial cells could support development of 8- to 16-cell embryos or early morula, but their viability is still questionable.  相似文献   

10.
Four cell embryos collected by laparatomy from Sardinian breed ewes superovulated with FSH-p (16 mg Sigma), were divested of their zonae pellucidae (ZP) by micromanipulation or chemical methods (pronase 0.5%, tyrode pH 2.2). The blastomeres were separated by pipetting using a flame polished pasteur pipette in a Ca free medium (PBS. Sigma) and were inserted into previously evacuated Z.P. using a Leitz micromanipulator. The Z.P. were removed either mechanically or with acid tyrode; pronase was unable to digest them after incubation at 30 degrees C for 120 minutes. The single blastomeres were cocultured on a monolayer of ovine oviductal epithelial cells in TCM 199 + 10 FCS at 38 degrees C in 5% CO2 for 60 hours. No developments were observed in blastomeres obtained by acid digestion of the ZP while 50% of the other blastomeres continued their development until the 16 cell stages. Our results suggest that coculture with oviductal epithelial cell monolayers can support in vitro development of single ovine blastomeres.  相似文献   

11.
The effects of in vitro culture systems for sheep zygotes on subsequent fetal growth and development to day 61 and day 125 of gestation were studied. Zygotes recovered from superovulated Scottish Blackface ewes approximately 36 h after intrauterine insemination using semen from a single Suffolk sire were cultured for 5 days in (a) a granulosa cell co-culture system (co-culture); (b) synthetic oviductal fluid medium without serum (SOF-); and (c) synthetic oviductal fluid medium supplemented with human serum (SOF+). Control embryos were recovered from superovulated donor ewes at day 6 after oestrus. Embryos were transferred at day 6 to synchronous Scottish Blackface recipient ewes. In total, 146 gravid uteri were recovered, comprising 97 at day 61 (20 co-culture, 27 SOF-, 25 SOF+ and 25 control) and 49 at day 125 (13 co-culture, 8 SOF-, 6 SOF+ and 22 control) of gestation. Fetuses derived from co-cultured embryos were 14% heavier (P < 0.01) by day 61 of gestation than those derived from control embryos. Growth coefficients derived from the linear allometric equation logey = logea + b logex (where y = organ mass; x = fetal mass) were significantly greater (P < 0.05) for liver, heart, kidneys and plantaris muscle in fetuses derived from co-cultured embryos, and for liver in fetuses derived from SOF+ embryos than those for control fetuses. Fetuses derived from co-cultured embryos were 34% heavier (P < 0.001) and fetuses derived from SOF+ embryos were 18% heavier (P < 0.01) by day 125 of gestation than those derived from control embryos. Growth coefficients for liver and heart for fetuses derived from co-culture and SOF+ embryos were also significantly greater (P < 0.05) at this stage of gestation than those for control group fetuses. In contrast, allometric coefficients for these organs in fetuses derived from embryos cultured in SOF without serum supplementation were not different from those for controls. Excessive volumes of amniotic fluid (polyhydramnios) were observed in 23% of conceptuses derived from co-cultured embryos. In vitro embryo culture can significantly influence fetal growth and this study provides quantitative evidence of major shifts in the patterns of organ and tissue development.  相似文献   

12.
Epidermal growth factor (EGF) has been shown to enhance the in vitro rate of blastocyst formation in several species. Follicular development was induced in ewes (n=15) by twice daily administration of FSH-P on Days 13 and 14 of the estrous cycle. Cumulus oocyte complexes (COCs) were collected from all visible follicles (n=25+/-2.4/ewe) on Day 15. COCs from each ewe were cultured separately for 24h in maturation medium (containing 10% serum, LH, FSH and estradiol) with (8.2+/-0.9 per ewe) or without (7.8+/-0.8 per ewe) EGF (10 ng/ml). Oocytes were then denuded by hyaluronidase treatment, and healthy oocytes were cultured in the presence of frozen-thawed semen in synthetic oviductal fluid (SOF) medium containing 2% sheep serum. After 18-20 h, zygotes were transferred to SOF medium without glucose and cultured for about 36 h until they reached the 4-8 cell stage. Embryos were transferred to SOF medium with glucose for further development. Medium was changed every other day until blastocyst formation on Day 8 of culture (Day 1=day of fertilization). The rate of embryonic development was evaluated throughout the culture period. After maturation, cumulus cells were more expanded in the presence than in the absence of EGF. The rates of fertilization (overall 75.7+/-3.9%) and morula formation (overall 40.6+/-7.1%) were similar (P>0.05) for COCs cultured with or without EGF. However, EGF increased (P<0.01) the number of blastocysts (1.4+/-0.1 versus 0.6+/-0.2 per ewe) and tended to increase (P<0.1) the rate of blastocyst formation (21.0+/-6.6% versus 13.4+/-4.3% per ewe). These data demonstrate that EGF increases blastocyst formation in FSH-treated ewes. Therefore, EGF is recommended as a supplement to maturation medium to enhance embryonic development in vitro in FSH-treated sheep.  相似文献   

13.
The ovine oviduct was evaluated as a culture system for early bovine embryos. One- to two-cell embryos were collected from superovulated heifers killed 36 or 48 h after the onset of estrus, embedded in agar cylinders, and transferred to oviducts ligated at the uterotubal junction. After 5 d (6.5 to 7.0 d after donor estrus), embryos were recovered and evaluated for development to the late morula or blastocyst stage. In Experiment 1, 86 embryos were cultured in 10 ewes in which the onset of estrus was synchronized with that of the donors. Fifty-eight embryos (68%) were recovered; of these, 31 (53%) had continued normal development. In Experiment 2, development in ovariectomized versus intact cyclic ewes was compared. Recovery from ovariectomized ewes (26/39, 67%) did not differ from intact cyclic ewes (26/35, 74%) and the proportion developing normally also did not differ (ovariectomized: 7/26, 27%; intact cyclic: 11/26, 42%). In Experiment 3, embryo development was compared in anestrous versus ovariectomized ewes. Recovery rate (anestrous: 22/43, 51%; ovariectomized: 20/51, 39%) and the proportion developing normally (anestrous: 8/22, 37%; ovariectomized: 9/20, 45%) did not differ between treatments. Developmental competence of oviduct-cultured embryos was tested by transfer to 16 synchronous heifers, of which eight (50%) became pregnant; five delivered calves. Results indicate that the ovine oviduct provides an adequate site for the culture of early bovine embryos.  相似文献   

14.
Factors influencing the developmental potential of cultured rabbit zygotes and their ability to incorporate and integrate the WAP-hPC (human protein C) gene were investigated. Rabbit zygotes (n = 1053) were recovered from both superovulated and nontreated New Zealand White females. The hormonal treatment of rabbit donors resulted in a doubling of the number of recovered ova per donor when compared with the nontreated group (18 vs 9 ova). However, the quality of recovered zygotes (presence of both pronuclei) was significantly better in the nontreated group (99 vs 88%, Experiment 1). The effect of various culture media on the development of rabbit zygotes in vitro was evaluated after incubation under CO2-free conditions (Experiment 2). In serum-free, growth factor-supplemented medium (BSEITS, DME/F12, 1.5% BSA, EGF, insulin, transferrin and sodium selenite) the percentage of morula/blastocyst stage embryos was significantly higher (88%) than in DME/FCS, (DME/F12, 10% fetal calf serum, 59%) or the control group (DME/F12, 1.5% BSA, 25%). In Experiment 3, zygotes were microinjected with the WAP-hPC gene and were examined after 72 h of culture. Zygote cleavage and the percentage of morula/blastocyst stage intact embryos were higher (79 and 58%, respectively) than in microinjected embryos (31.0 and 21.5%, respectively). Summarized data of the PCR assay of microinjected zygotes demonstrated positive signals for the integration of the WAP-hPC gene in 6.6% (34 of 515) of all the microinjected zygotes.  相似文献   

15.
The application of pGH (porcine Growth Hormone) to superovulated ewes was studied with the aim of improving the embryo yield. Thirty-seven ewes were superovulated with pFSH for 3 d and 18 of them were cotreated the third day with 0.50 mg of pGH. Embryos were surgically recovered on Day 7 after sponge withdrawal. Then, 102 morphologically healthy embryos were immediately transferred in pairs to 51 synchronized recipient ewes. The GH treatment did not significantly affect the percentage of ewes in estrus, the time of estrus onset or the ovulation rate. However, it improved synchronization by grouping estrus in a narrower range (12 h) in comparison to the control group (24 h); (16 to 28 h after sponge withdrawal vs 12 to 36 h; P < 0.05). The total amount of LH released during the preovulatory surge was lower in the GH than in the control group (P < 0.05). No differences were found between groups for other LH-related parameters such as basal levels, peak values or peak time from sponge removal. The proportions of unfertilized oocytes and degenerate embryos recovered were lower in the GH cotreated group (P < 0.05 and P < 0.01, respectively). This resulted in higher rates of transferable embryos and lambs born per donor ewe in the GH than in the untreated group (3.9 vs 1.7 and 2.28 vs 0.84, respectively; both, P < 0.05). These beneficial effects of GH would likely be due either to a direct action on oocyte maturation or to an indirect action on the oviductal environment.  相似文献   

16.
Experiments were carried out to develop and improve in vitro culture systems for IVM-IVF prepubertal goat oocytes. Cumulus oocyte complexes (COC) were obtained by slicing ovaries from slaughtered prepubertal goats. Oocytes were matured in TCM-199 supplemented with 20% estrous goat serum (EGS) + 10 micrograms/mL FSH + 10 micrograms/mL LH + 1 microgram/mL estradiol 17 beta for 27 h at 38.5 degrees C in 5% CO2 in air. Matured oocytes were placed in drops of TALP- fert medium supplemented with hypotaurine (1 microgram/mL) and inseminated with freshly ejaculated spermatozoa following capacitation as described by Younis et al. (69) but with 100 micrograms/mL heparin. At 24 h post insemination the ova were transferred to various in vitro culture media, and early embryo development was evaluated until Day 8 post insemination. Specifically, in the studies described here, we have compared the effects of (Experiment 1) co-culture systems using oviductal ephitelial cells (OEC) and cumulus cells (CC), both caprine and bovine; (Experiment 2) the presence of serum and/or OEC; (Experiment 3) 4 culture media (TCM199, Ham's F10, CZB abd SOF) for co-culture with OEC; and (Experiment 4) conditioned medium with OEC. In Experiment 1, the percentage of morulae plus blastocysts was higher in culture with OEC, both caprine and bovine (15.1 and 14.8%, respectively) than with CC (4.1 and 6.7%, respectively). In Experiment 2, the OEC with EGS did not improve the percentage of morulae and blastocysts obtained with OEC alone (14.3 and 23.1% respectively). In Experiment 3, this percentage was higher using OEC with TCM-199 compared to CZB medium (21.3 and 12.3%, respectively) and in Experiment 4, the results were 3.7, 11.2 and 21.3% for TCM-199 without cells, Conditioned Medium and co-culture with OEC, respectively.  相似文献   

17.
Peripheral blood samples were collected daily (Days 1-10 after ovulation) and analysed for progesterone content. Luteal tissue was collected on Day 10 after the LH surge, or Day 10 after hCG injection from cyclic and superovulated ewes, respectively. The tissue was enzymically dispersed and an aliquant was utilized for measurement of cell diameters, and staining for 3 beta-hydroxy-delta 5-steroid dehydrogenase-delta 5, delta 4-isomerase activity (3 beta-HSD). The remaining cell preparation was separated into small (10-22 micron) and large (greater than 22 micron) cell fractions by elutriation. Small and large cell suspensions were incubated (37 degrees C, 2 h) in the presence or absence or ovine LH (100 ng/ml) or dbcAMP (2 mM) and progesterone content of the medium was measured. Superovulation did not affect circulating progesterone concentrations, when expressed per mg luteal tissue recorded; basal progesterone production by small or large luteal cells; the unresponsiveness of large luteal cells to ovine LH or dbcAMP; the ratio of small:large cells recovered by dissociation the mean diameter of total cells; or the mean diameter of large cells. However, the mean cell diameter and LH stimulation of progesterone production by small cells were greater (P less than 0.05) in luteal tissue collected from superovulated than in that from cyclic ewes. These differences appear to be an amplification of basic function. Therefore, we conclude that corpora lutea obtained from superovulated ewes can be used to study functional aspects of small and large cells.  相似文献   

18.
The objective of this study was to determine the effect of fetal calf serum (FCS) on the quality of in vitro produced bovine embryos. Cumulus oocyte-complexes (COCs, n = 2 449) recovered by ovum pick-up from Bos taurus indicus donors were randomly assigned to experimental groups. Sperm selected by Percoll gradient was used for in vitro fertilization (insemination = Day 0). In Experiment 1 (n = 1 745 COCs), zygotes were cultured in vitro in Synthetic Oviduct Fluid + 4 mg/mL of bovine serum albumin (BSA), or BSA + 2% FCS (BSA+FCS). In Experiment 2 (n = 704 COCs), the COCs were cultured in SOF + BSA, BSA + 2% FCS, or BSA + 2% FCS on D4 (BSA + FCSD4). In Experiment 1, blastocyst yield (51%) and Quality I blastocysts (41%) at Day 7 were higher (P < 0.05) in the BSA + FCS treatment than in BSA (42 and 30%, respectively). In Experiment 2, blastocyst yield was higher (P < 0.05) in the BSA+FCS (47%) treatment. Quality I blastocyst yield was higher (P < 0.05) for BSA + FCS (34%) and BSA+FCSD4 (32%) compared to the BSA treatment (20%). A total of 820 embryos were transferred, with no significant differences among groups in pregnancy rates. In conclusion, in vitro culture in SOFaaci + BSA + FCS enhanced blastocyst yield and Quality I blastocysts; adding FCS to the culture medium increased the efficiency of IVP of bovine embryos.  相似文献   

19.
20.
This study examined the effects of fetal calf serum (FCS) supplementation of culture medium on blastulation and hatching of bovine morulae cultured in vitro. The presumptive zygotes derived from in vitro maturation and fertilization (IVM/IVF) were cultured in the modified synthetic oviduct fluid medium containing 3 mg/ml BSA (mSOF-BSA). At 120 h post insemination, morulae were randomly assigned to culture with mSOF-BSA (control) or mSOF containing 5% FCS (mSOF-FCS) instead of BSA. The replacement of BSA with FCS in mSOF significantly increased the percentage of blastocyst formation from Day 6 to Day 10 (Day 0 = the day of in vitro insemination) and the hatching rate of embryos on Days 8 and 9. The total number of cells in morulae and blastocysts on Day 6, in blastocysts on Day 7, and in blastocysts and hatched blastocysts on Day 8 were similar among the treatments. However, the replacement of BSA with FCS in mSOF significantly increased the total number of cells in hatched blastocysts on Day 10. Although the time of blastulation of embryos was significantly accelerated by the replacement of BSA with FCS in mSOF, the total number of cells in embryos at blastulation was lowered. The total number of cells in embryos at blastulation showed a time-dependent decrease when the embryos were cultured in mSOF-BSA. In contrast, the total number of cells in embryos that were cultured in mSOF-FCS depended little on the time after in vitro insemination. The results indicate that FCS supplementation of culture medium increased the percentage of embryos developing to the blastocyst stage without an increase in the total number of cells. However, an acceleration in the hatching rate and an increase in the total number of cells in hatched blastocysts were observed, compared with that in BSA-supplemented medium. It is suggested that FCS in the culture medium initiates earlier blastulation with fewer total numbers of cells in the morulae than BSA during in vitro culture of bovine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号