首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to find suitable conditions for blastomere fusion of mouse two- and four-cell embryos using the electrofusion method to simplify the nuclear transfer procedure. Single blastomeres of ICR and F1 (C57BL/6J x CBA/N) two-cell embryos or ICR four-cell embryos and F1 two-cell embryos were paired and treated with electric stimulus under different fusion conditions. Two hours after electrofusion treatment, the fused blastomere pairs were encapsulated in alginate gel and cultured for 96 hours to observe their developmental potential. When the single blastomere pairs of two-cell embryos were exposed to electric pulses of 1.0, 1.5 and 2.0 kV/cm for 30, 60 and 90 mu sec, high fusion rates were obtained (84.6 to 100%). However, when two-cell blastomere were paired with four-cell blastomere and then treated under the same conditions, the fusion rates (27.5 to 87.5%) were lower than that of single blastomere pairs of two-cell embryos regardless of the duration and strength of the d.c. pulses. The blastocyst developmental rate after in vitro culture of the fused blastomere pairs of two-cell embryos using the above electrofusion conditions was high (81.8 to 100%). Lower blastocyst developmental rates were obtained on the fused blastomere pairs of two- and four-cell embryos (46.4 to 76.2%). Based on the results of this study, a pulse duration of 60 mu sec and a pulse strength of 1.0kV/cm were the most suitable conditions for single blastomere pair fusion of two-cell or two- and four-cell embryos. The study further showed that alginate gel is a good substitute for zonae pellucidae for encapsulating zona-free embryos.  相似文献   

2.
This study was undertaken to examine the effects of various electric fields such as alternating current (a.c.) voltage, fusion pulse strength, pulse duration, pulse number and electrode geometry on blastomere fusion and developmental rates of mouse two-cell embryos. The a.c. voltages (6 and 12 V/mm) did not affect the fusion and developmental rates. High fusion and developmental rates were obtained when pulse strengths of 1.0 to 2.5 kV/cm, pulse durations of 30 to 90 mu sec and pulse numbers of 1 to 6 were applied using a wire chamber. Comparison of electrode geometries showed that fusion rates were similarly high (93 to 98%) when pulse strengths of 1.0 to 2.5 kV/cm were applied, regardless of the electrode geometry. However, significantly lower developmental rates were observed in a rectangular chamber compared with those in a wire chamber, except when the pulse strength was 1.0 kV/cm. It was further observed that in a rectangular chamber, the developmental rate decreased with increasing pulse strength from 1.0 to 2.0 and 2.5 kV/cm. The results of this study indicate that by using a wire chamber, electric fields can be successfully applied across a relatively wide range of pulse strength, duration and number to provide sufficiently high fusion and subsequent developmental rates. The fusion conditions did, however, vary with chambers of different electrode geometries.  相似文献   

3.
Tetraploid bovine blastocysts were produced experimentally by electrofusion of in vitro matured and fertilized, zona-enclosed two-cell embryos (33-35 hr after initiation of sperm-egg incubation) using three fusion protocols. Field strengths of 1.0, 1.4, and 2.4 kV/cm were tested and the rate of fusion, subsequent cleavage, and blastocyst development were measured for each. High rates of fusion (76.5% +/- 2.8%), cleavage (72.5% +/- 7.4%) and blastocyst development (56.1% +/- 6.4%) were achieved with the application of 1. 4 kV/cm as a single 100-microseconds pulse. Embryos were scored 30 and 60 min after stimulation for fusion. No time effect for fusion, cleavage, or blastocyst development was observed. Chromosome preparations of day 7 blastocysts revealed 12.5% of fused embryos were tetraploid. This is a significant increase from that found in nonfused embryos where spontaneous tetraploidy did not occur. An electrical stimulus of 1.0 kV/cm applied as two 50-microseconds pulses produced significantly less one-cell embryos (64.2% +/- 3.0%) compared to 1.4 kV/cm while cleavage (79.9% +/- 3.4) and blastocyst development (44.6% +/- 4.0%) were not different from that for unexposed control embryos (89.5% +/- 2.3% and 57.2% +/- 3.2%, respectively). Embryos fused at 2.4 kV/cm applied as a single 30-microseconds pulse (69.7% +/- 5.7%) showed significantly lower cleavage (72.1% +/- 3.7%) and blastocyst rates (40.2% +/- 4.6%) compared to the unexposed control.  相似文献   

4.
Optimal conditions of electrofusion for blastomeres of two-cell bovine embryos to produce tetraploid embryos were investigated. The high fusion rate (73–95%), viability, and develop mental capacity were obtained under a field strength of 1.0 kV/cm with direct current pulses of 10 or 25 μsec duration applied twice. Cytological study showed that 78.6% (11/14 embryos) of embryos exposed to electrofusion had tetraploid chromosome sets and the others were diploid or hexaploid. The tetraploid embryos had the capability to develop up to morulae stage in vitro.  相似文献   

5.
The kinetics of electrically induced fusion of human erythrocyte ghosts were monitored by the Tb/DPA and ANTS/DPX fluorescence fusion assays. Ghosts were aligned by dielectrophoresis using a 3-MHz 350-V/cm alternating field and were fused by single 15- or 50-microseconds electric field pulses of amplitude 2.5-5.0 kV/cm. Fusion was detected immediately after the pulse. The peak fluorescence change due to fusion was always obtained within 7 s of pulse application, and was highest for a 5.0 kV/cm 15-microseconds pulse. Probe leakage was measured separately and became apparent only 2-3 s after the initiation of fusion. Increasing pulse amplitudes produced higher fusion yields but produced more leakage from the fusion products. 50-microseconds pulses produced less fusion, resulting from a disruption of the dielectrophoretic alignment by fluid turbulence immediately after pulse application. Probe leakage was observed only when pulse application was preceded by dielectrophoresis, suggesting that close membrane positioning allows for additional membrane destabilization caused by the high field pulse. The fluorescence kinetics are interpreted using a simplified model depicting three major types of events: (a) fusion without observable leakage, (b) fusion followed by probe leakage, and (c) contact-related leakage from ghosts which do not undergo contents mixing.  相似文献   

6.
The in vitro developmental potential of porcine nuclear transfer (NT) embryos was evaluated. Oocytes were matured for 42-44 h, and metaphase II-oocytes were enucleated. Fetal fibroblasts infected with the enhanced green fluorescent protein (EGFP) gene were serum-starved for 3-5 days. A single cell was injected into the perivitelline space of the enucleated oocytes. The reconstructed oocytes were allocated to different fusion and activation conditions. In experiment 1, two different fusion/activation conditions were compared: two pulses of 1.2 kV/cm for 30 microsec (group A), or one pulse of 1.6 kV/cm for 30 microsec followed in 30 min by one pulse of 1.2 kV/cm for 30 microsec (group B). Parthenogenetic controls were created by using the group A parameter. The fusion rate in group A (mean +/- SEM, 68.4% +/- 3.9%) was higher (P < 0.05) than in group B (59.4% +/- 2.3%). The rates of cleavage (50.1% +/- 4.6% to 62.8% +/- 5.5%) were not different among control and treatment groups. However, the rate of parthenogenetic control embryos developing to the blastocyst stage (18.1% +/- 3.1%) was higher (P < 0.05) than the rate of NT embryos (5.9% +/- 1.7% and 4.9% +/- 2.5%). In experiment 2, we compared two pulses of 1.2 kV/cm (group C) versus two pulses of 1.3 kV/cm (group D). For two control groups, the same pulses as those given to group C or D, respectively, were supplied. The fusion rate in group D (70.6% +/- 4.2%) was higher (P < 0.05) than in group C (58.9% +/- 2.7%). The cleavage rates were not different among control and treatment groups (58.1% +/- 8.1% to 73.6% +/- 6.0%). However, the rate of embryos developing to the blastocyst stage in group D (3.5% +/- 1.7%) was lower (P < 0.05) than in controls and group C (11.4% +/- 2.0% to 16.4% +/- 1.1%). In experiment 3, we examined whether the presence of cytochalasin B (CB) during donor cell injection affects the development of NT embryos. The fusion rate of oocytes in the group with CB (78.4% +/- 1.4%) was higher (P < 0.05) than in the group without CB (70.9% +/- 0.2%). The cleavage rate of the control group (85.5% +/- 4.9%) was higher (P < 0.05) than those of the treatment groups (61.6% +/- 2.7% and 63.9% +/- 4.3%). However, the rates of embryos developing to the blastocyst stage (8.1% +/- 2.5% to 19.1% +/- 6.0%) and the mean cell number of blastocysts (29.4 +/- 5.2 to 45.7 +/- 6.4) were not different among control and treatment groups. Green fluorescence was observed at all stages in NT embryos. These results indicate that two pulses of 1.2 kV/cm are enough for fusion/activation of NT embryos to develop to the blastocyst stage, and that the presence of CB during donor cell injection is not necessary for early development of NT embryos.  相似文献   

7.
The present studies were carried out to investigate the effects of intensity of dc pulse, number of dc pulse and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. In experiment 1, different fusion/activation intensity (two dc pulses of 0.4, 0.8, 1.2, 1.6 and 2.0 kV/cm for 30 micros, respectively) was carried out to investigate development of embryos. In experiment 2, the reconstructed oocytes were fused and activated with one, two or three dc pulses of 1.2 kV/cm for 30 micros. In experiment 3, reconstructed oocytes were equilibrated in TCM-199 medium for 0-6 h, respectively, and fused/activated with one dc pulse of 1.2 kV/cm for 30 micros. The reconstructed embryos were cultured in PZM-3 medium containing 0.3% BSA. When oocytes were fused with donor cell by two dc pulses of 0.4 kV/cm for 30 micros, the rates of cleavage and blastocyst formation were significantly lower (32.9% and 2.5%) than those of fused by 0.8 kV/cm (59.0% and 17.4%) or 1.2 kV/cm (63.3% and 18.4%), respectively. One dc pulse of 1.2 kV/cm for 30 micros was enough to fuse and activate embryos to develop to blastocyst (24.8%). Equilibration for 2-3 h in TCM-199 before fusion/activation was beneficial for improving the developmental ability of embryos produced by nuclear transfer (25.6-23.3% at blastocysts).  相似文献   

8.
Abstract Protoplasts from Saccharomyces cerevisiae and Saccharomyces diastaticus were collected in a non-homogeneous alternating electric field. The dependence of the viability of the protoplasts on different conditions of collection was tested by determining the regeneration rates in each case. The parameters varied in collection were the field strength (0.33 kV/cm–6.67 kV/cm), the frequency of the alternating field (1–2 MHz) and the collection time (2–10 min). The introduction of a new type of fusion chamber (meander chamber) permitted, for the first time, quantitative exposure of protoplasts to the electric field as well as their complete transference into the regeneration medium. The regeneration rates of yeast protoplasts collected under those conditions employed for electrofusion did not differ from those of protoplasts which had been maintained under the same experimental conditions but were not subject to the influence of an alternating electric field. The two yeast strains were fused together (collection 1 kV/cm; pulse 15 kV/cm; duration of pulse 40 μs) and the fusion products were introduced into a selection medium for regeneration. The fusion rate was about 4.8 × 10−4; on average 272 colonies grew on the selection medium for each chamber filling.  相似文献   

9.
This study was designed to determine what effect electropulse parameters would have on rate of fusion, lysis, and embryo viability when embryos were subjected to electrofusion treatment in nonelectrolyte or electrolyte pulse media. Previous experiments have shown electrolyte medium (i.e., phosphate-buffered saline; PBS) to have a positive effect on electric pulse-induced murine oocyte activation. In addition, these results also indicated that pulse media containing 0.9 mM Ca2+ induced a dramatic increase in the rate of murine oocyte activation compared with oocytes pulsed in media containing 0.0 or 0.05 mM Ca2+. Pronuclear or two-cell-stage embryos were obtained from superovulated prepubertal randomly bred Swiss (albino) female mice. Embryos were randomly assigned to three nonelectrolyte and three electrolyte treatment media. Nonelectrolyte media consisted of 0.3 M mannitol (T1), 0.3 M mannitol + 0.05 mM CaCl2 (T2), and 0.3 M mannitol + 0.9 mM CaCl2 (T3). Electrolyte media consisted of Ca(2+)-free PBS (T4), PBS containing 0.05 mM CaCl2 (T5), and PBS containing 0.9 mM CaCl2 (T6). Three experiments were carried out; the objective of the first was to determine the rate of fusion and rate of lysis in murine two-cell embryos placed in the two types of (0.3 M mannitol, T1-T3; and PBS, T4-T6) fusion media and subjected to a fusion procedure (3 V, 5 sec AC alignment pulse, followed by a 1.56 kV.cm-1, 99 microsec DC fusion pulse). Control two-cell embryos were placed in T1 for 2 min and did not receive a fusion pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.  相似文献   

11.
The rabbit was used as a model for nuclear transfer. A critical step in nuclear transfer is oocyte activation, which was evaluated in this research. Optimal field strength of an electric stimulus for activation was examined. A significantly higher activation rate in all criteria tested was achieved when oocytes were activated electrically with a field strength of 2.4 kV/cm versus 1.2 or 1.8 kV/cm. Also, electrical stimulation with combined alternating current (AC) and direct current (DC) was superior to DC stimulation alone for activation. In another study involving 586 oocytes, exposure of oocytes to cytochalasin B for 1 h followed by activation with electrical stimulation significantly improved development of the oocytes to blastocyst stage compared to oocytes without cytochalasin B pre-exposure (38% vs 26%, p less than 0.05). Cytochalasin B exposure alone (control), however, had no effect on activation. Exposing oocytes to activation medium without electrical stimulation also activated some oocytes. In the nuclear transfer experiment, blastomeres from 8-cell embryos cultured for 20-24 h to the 32-64-cell stage were used as nuclear donor cells. Of 491 oocytes used, 459 (93%) survived the enucleation and fusion procedure, 370 (81%) fused, and 284 (77%) developed into 2-4-cell embryos. A total of 243 of these 2-4-cell embryos were transferred to 15 pseudopregnant recipients and produced 8 young (3%). Although the efficiency is low, this study demonstrated that rabbit morulae cultured for 20-24 h to the 32-64-cell stage as nuclear donors for transfer remain totipotent.  相似文献   

12.
Effect of high-voltage pulses on the viability of human leucocytes in vitro   总被引:1,自引:0,他引:1  
Human leucocytes were exposed to high-voltage pulses (transient currents) produced by discharging a capacitor through a test chamber containing the cell suspension then tested for viability using trypan blue. With the pulse discharge times of 1 and 3 μs increases in the number of dyeloaded cells were seen for field strengths above 2.6 kV/cm in the sample. For 0.2-μs pulses the critical field strength was about 5 kV/cm.  相似文献   

13.
In this study, micromanipulation and electrofusion conditions for the cloning of in vitro-produced bovine embryos (here after termed IVM/IVF embryos) derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes were established. The effect of DC field strength on the fusion rate was tested in a model system using pronuclear stage embryos in which a cytoplasmic vesicle was removed and reinserted. Efficient fusion (80%) was obtained by applying a pulse of 1.75 kV/cm for 40 μsec. In vitro development of manipulated pronuclear stage embryos was as efficient as that of unmanipulated control embryos. Different fusion media were compared in the cloning procedure, using IVM oocytes as recipients and blastomeres from day 6 IVM/IVF donor embryos. Zimmermann cell fusion medium reduced the lysis of nuclear transfer embryos compared to F300 (5% vs. 25%). The effects of drugs disrupting the microfilaments and microtubuli were determined. Neither the addition of cytochalasin B (CCB) for 1 hr in the postfusion medium nor incubation of donor blastomeres with nocodazole had a significant effect on the fusion or cleavage rate of the nuclear transfer embryos. Additional experiments demonstrated that there was no difference in developmental potential between nuclear transfer embryos allowed to develop in vitro or in vivo and that the embryos gave a 15% pregnancy rate in recipient cattle. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

15.
The present study was conducted primarily to optimize electrofusion conditions for efficient production of zona-free nuclear transfer embryos in buffalos (Bubalus bubalis). We found that 4V AC current for proper triplet alignment and single step fusion method, using a single DC pulse of 3.36 kV/cm for 4-μs duration, produced the most convincing results for efficient reconstitution of zona-free cloned embryos. Lysis rate was very high (84.28 ± 2.59%) when triplets were in physical contact with negative electrode after applying DC current, however, cleavage rate and blastocyst rate were found to be similar when the triplets were not in physical contact with either positive or negative electrodes or when they were in physical contact with the positive electrode. Significant improvement in blastocyst production was observed when the somatic cell faced the positive electrode than when it faced the negative electrode (39.17 ± 2.74% vs. 25.91 ± 2.00%, respectively) during electrofusion. Similarly, the blastocyst rate (52.0 ± 3.4%) was found to be significantly higher when reconstructed embryos were activated 6 h post electrofusion as compared to 0, 2, 4 and 8 h (16.04 ± 6.3%; 18.36 ± 1.4%; 22.44 ± 3.7% and 30.02 ± 4.6%, respectively). This study establishes the application of zona-free nuclear transfer procedures for the production of handmade cloned buffalo embryos through optimization of electrofusion parameters and post fusion holding time for enhancing their preimplantation development.  相似文献   

16.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

17.
Gene targeting technology is not available in the rat which is an animal model of major importance, e.g., in cardiovascular research. This is due to the fact that the rat embryonic stem cell (ESC)-like cells established by several groups do not form germ-line chimeras when injected into blastocysts. In the mouse, the aggregation of ESC with tetraploid embryos has allowed the generation of animals completely derived from these cells. However, aggregation of rat ESC-like cells with tetraploid rat embryos has not yet been attempted to evaluate their developmental capacity. Therefore, we established a method to produce tetraploid rat embryos by fusion at the two-cell stage. Chemical fusion by polyethylene glycol (PEG) was shown to be less efficient (56.3% fused embryos) than electrofusion (96.1% fused embryos). The rate of development of fused embryos to blastocysts was independent of the fusion method and similar to the rate of control embryos. However, this rate was lower when the embryos had been cultured from the zygote state before fusion (14-20%) compared to freshly isolated two-cell embryos (41-63%). Alike for the mouse, blastocysts derived from fused two-cell rat embryos contained about half the number of cells as control blastocysts and were homogeneously tetraploid with no evidence of mosaicism. This method may be useful for the establishment of gene-targeting technology in the rat.  相似文献   

18.
Electroporation's use for laboratory transfection and clinical chemotherapy is limited by an incomplete understanding of the effects of electroporation parameters on molecular uptake and cell viability. To address this need, uptake of calcein and viability of DU 145 prostate cancer cells were quantified using flow cytometry for more than 200 different combinations of experimental conditions. The experimental parameters included field strength (0.1-3.3 kV/cm), pulse length (0.05-20 ms), number of pulses (1-10), calcein concentration (10-100 microM), and cell concentration (0.6-23% by volume). These data indicate that neither electrical charge nor energy was a good predictor of electroporation's effects. Instead, both uptake and viability showed a complex dependence on field strength, pulse length, and number of pulses. The effect of cell concentration was explained quantitatively by electric field perturbations caused by neighboring cells. Uptake was shown to vary linearly with external calcein concentration. This large quantitative data set may be used to optimize electroporation protocols, test theoretical models, and guide mechanistic interpretations.  相似文献   

19.
As shown by the birth of the first cloned dog ‘Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment.  相似文献   

20.
Summary Premature chromosome condensation (PCC) was induced by electrofusion of metaphase cells of an Ehrlich ascites tumor cell line with interphase cells of a Muntjac cell line or of a Chinese Hamster subline. Electrofusion was performed by cell alignment in a weakly inhomogeneous a.c. field of 200 V/cm amplitude (peak-to-peak value) and of 1.7 MHz frequency, followed by the application of a series of breakdown (fusion) pulses of 5 kV/cm strength and 15 µs duration. Most of the PCC's were of the G2 type despite the large proportion of G1 and S cells in the suspension. The number of chromatid aberrations observed in electrofused cells which had not been subjected to irradiation was not significantly above the spontaneous level. This indicates that electrofusion, at least as used here, did not lead to lesions expressed as structural aberrations. When interphase cells were irradiated by X-ray doses below 3 Gy before electrofusion PCC analysis showed chromosome damage consisting mainly of breaks and gaps. The frequency of aberrations recorded by PCC was 6 to 40 fold larger than that seen in conventional metaphase analysis. This large increase probably arose because of an effective suppression of the G2 repair of chromosomal lesions by the fast condensation process which took place within about 30 min. This assumption was supported by PCC experiments in which the time between X-irradiation and fusion with subsequent chromosome condensation was varied. The results demonstrated that G2 repair of chromosomal lesions was not detectable until 20 min after fusion with a half-time of the repair kinetics of about 1.5 h. The selectivity of premature chromosome condensation in G2 cells is discussed in terms of the differences between electrofusion and chemically or virally induced fusion. It is assumed that the concentration and the transfer rate of the chromosome condensation factor from the metaphase to the interphase cell are the limiting factors in achieving PCC. This is because the localised permeabilisation of the membrane and the dominance of two-cell fusions are characteristic of electrofusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号