首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gallbladders and rectal contents were collected from cattle (n = 933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

2.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

3.
Experimental Escherichia coli O157:H7 carriage in calves.   总被引:5,自引:0,他引:5       下载免费PDF全文
Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding.  相似文献   

4.
Twelve strains of Escherichia coli O157:H7 were isolated from 9 of 25 beef samples purchased from retail stores in Malaysia. These strains produced Shiga toxin 2 with or without Shiga toxin 1 and had the eae gene and a 60-MDa plasmid. The antibiograms and the profiles of the arbitrarily primed PCR of the strains were diverse, suggesting that the strains may have originated from diverse sources.  相似文献   

5.
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4°C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4°C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

6.
We determined the prevalence of Escherichia coli O157:H7 in organically and naturally raised beef cattle at slaughter and compared antibiotic susceptibility profiles of the isolates to those of isolates from conventionally raised beef cattle. The prevalences of E. coli O157:H7 were 14.8 and 14.2% for organically and naturally raised cattle, respectively. No major difference in antibiotic susceptibility patterns among the isolates was observed.Many cattle producers have adopted production methods termed niche marketing to meet consumer demand for safe and healthy beef. The two main niches for beef cattle producers are organic and natural production (3). Organic beef cattle production, regulated by the U.S. Department of Agriculture, requires feeding with certified organic feed (16) and raising cattle without the use of antibiotics, hormones, and other veterinary products (3). Guidelines for producers to label the product as “natural” differ among natural beef programs, and such programs are administered and regulated by the company or organization that owns the brand name rather than the U.S. Department of Agriculture (11). Natural production guidelines often include a complete restriction on the use of antibiotics and growth-promoting hormones, but unlike guidelines for organic production, they allow feed from nonorganic sources (11). Escherichia coli O157:H7 is a major food-borne pathogen that causes outbreaks of hemorrhagic enteritis, which often leads to hemolytic uremic syndrome in children and the elderly (10). Cattle are major reservoirs of E. coli O157:H7, which colonizes the hindgut, specifically the rectoanal mucosal region. Cattle feces are the major source of food and water contamination (10). The impact of organic production methods on the prevalence of food-borne pathogens, including E. coli O157:H7 and Campylobacter spp. in dairy cattle (7, 14) and Campylobacter and Salmonella spp. in chickens (6, 19), has been studied previously. However, there is no published study on the prevalence of E. coli O157:H7 in organically and naturally raised beef cattle. Additionally, nothing is known regarding the effects of organic and natural production methods on the antibiotic susceptibilities of E. coli O157:H7 in beef cattle. Our objectives were to determine the prevalence of E. coli O157:H7 in the feces of organically and naturally raised beef cattle at slaughter and compare the antibiotic susceptibilities of isolates from organically, naturally, and conventionally raised beef cattle.Cattle included in this study were from three types of production systems, organic, natural, and conventional. Organically raised beef cattle were from farms that were certified by the National Organic Program (17). The naturally raised beef cattle were from farms that were certified by the All Natural Source Verified Beef Program (17). The collection of samples from these cattle occurred in an abattoir. Samples from conventionally raised cattle from two feedlots were collected in a different abattoir so that the antibiotic susceptibilities of their isolates could be compared with those of isolates from organically and naturally raised cattle. Fecal samples were obtained by cutting open the rectum and spooning out the contents. The mucosa of the rectum was then rinsed with water until free of visible fecal material and swabbed with a sterile foam-tipped applicator (4). The isolation and identification of E. coli O157 and PCR detection of major virulence genes (eae, stx1, stx2, hlyA, and fliC) were carried out as described by Reinstein et al. (13). A subset of 60 isolates, 20 (10 from fecal samples and 10 from rectoanal mucosal swabs [RAMS]) from each production system, was randomly chosen to determine the antibiotic susceptibility patterns by the broth microdilution method (9). The antibiotics (all from Sigma-Aldrich) tested were amikacin, amoxicillin (amoxicilline), ampicillin, apramycin, bacitracin, cefoxitin, ceftazidime, ceftriaxone, cephalothin (cefalotin), chloramphenicol, chlortetracycline, ciprofloxacin, enrofloxacin, erythromycin, florfenicol, gentamicin, kanamycin, lincomycin, monensin, nalidixic acid, neomycin, norfloxacin, novobiocin, oxytetracycline, penicillin, rifampin (rifampicin), spectinomycin, streptomycin, tetracycline, tilmicosin, trimethoprim, tylosin, and vancomycin. The MIC was defined as the lowest concentration of an antibiotic that prevented visible growth of the organism. Each concentration of the antibiotic compound was duplicated in the microtiter plate, and the MIC determination was repeated with a different inoculum preparation. Logistic regression was performed using the PROC GENMOD procedure in the SAS system (SAS Institute, Cary, NC) to compare the prevalences of E. coli O157:H7 (with binomial distribution of outcomes) in fecal samples, RAMS samples, and fecal or RAMS samples (overall animal level prevalence). The MICs of antibiotics for E. coli O157:H7 isolates were analyzed using a nonparametric survival test in the PROC LIFETEST program of SAS to determine the effects of the production system (natural, organic, or conventional). Data were right censored when necessary (when the organism was resistant to the highest concentration evaluated). The Wilcoxon test was utilized to determine the effect of the production system on MICs.Samples from a total of 553, 506, and 322 organically, naturally, and conventionally raised cattle, respectively, were collected. In organically raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 24.4% across sampling days, with an average of 9.3%, and the prevalence in RAMS ranged from 0 to 30.9%, with an average of 8.7% (Fig. (Fig.1).1). In naturally raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 20.3%, with an average of 7.2%, and the prevalence in RAMS ranged from 0 to 23.8%, with an average of 8.9% (Fig. (Fig.1).1). In both organically and naturally raised cattle, the prevalence (total) detected by both sampling methods together was greater (P < 0.05) than the prevalence detected by either method alone (Fig. (Fig.1).1). Samples (either feces or RAMS) from 36 (11.2%) of 322 conventionally raised feedlot cattle were culture positive for E. coli O157:H7. The fecal prevalence of E. coli O157:H7 was 6.5%, and the prevalence determined by the RAMS sampling method was 7.1%. Most isolates (66.7% from organically raised beef cattle and 77.8% from naturally raised beef cattle) were positive for eae, stx2, hlyA, and fliC but negative for stx1. The stx2 gene was present in 100 and 95% of isolates from organically and naturally raised cattle, respectively. The prevalences of E. coli O157:H7 that we observed in organically and naturally raised beef cattle were similar to the previously reported prevalence in conventionally raised cattle (1). Our study did not include a statistical comparison of the prevalence data because of a number of differences, particularly in diet, among the organic, natural, and conventional production systems. Organically and naturally raised cattle are either required to graze a pasture or fed a forage-based diet. Although conflicting data exist (1), studies have shown that cattle fed a forage diet have both higher levels and longer durations of fecal shedding of E. coli O157:H7 than cattle fed a grain diet (18).Open in a separate windowFIG. 1.Prevalences of E. coli O157:H7 in organically and naturally raised beef cattle at slaughter. For each production system, bars not labeled with the same letter represent significantly different levels at P of <0.05.None of the tested isolates from the three production systems were susceptible to bacitracin, lincomycin, monensin, novobiocin, tilmicosin, tylosin, and vancomycin (MICs > 50 μg/ml). The MICs of 12 antibiotics (amikacin, apramycin, cefoxitin, ceftriaxone, gentamicin, kanamycin, nalidixic acid, neomycin, penicillin, rifampin, streptomycin, and tetracycline) for isolates collected from different production systems were significantly different (P < 0.05). MICs of gentamicin and neomycin for E. coli O157:H7 isolates from conventionally raised cattle were higher (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). However, MICs of amikacin, apramycin, cefoxitin, ceftriaxone, kanamycin, nalidixic acid, penicillin, rifampin, and tetracycline for isolates from conventionally fed cattle were lower (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). Among the 60 isolates tested for antibiotic susceptibilities, 6 isolates (10%) were susceptible to all antibiotics included in the study, excluding the seven antibiotics to which all isolates were resistant. Forty-two isolates (70%) were resistant to one antibiotic (MIC, >50 μg or >50 IU/ml), nine isolates (15%) were resistant to two antibiotics, and two isolates (3%) were resistant to five antibiotics. One isolate from the organically raised cattle group was resistant to 10 (amoxicillin, ampicillin, cefoxitin, cephalothin, chloramphenicol, florfenicol, oxytetracycline, penicillin, streptomycin, and tetracycline) of the 26 antibiotics that were inhibitory to other isolates. We have presented the data as the median MICs for each production system. In some instances, the median values were the same but the actual MIC data differed between production systems. This effect occurred because the data were right censored if isolates were not susceptible at 50 μg or 50 IU/ml. If more isolates from a particular production system than from another are censored, it may lead to statistical differences. This pattern justifies the use of survival analysis for this type of data. There were differences between MICs of many antibiotics (cefoxitin, ceftriaxone, gentamicin, nalidixic acid, neomycin, penicillin, rifampin, and tetracycline) for isolates from organically raised cattle and conventionally raised cattle. Similarly, there were differences between MICs of many antibiotics (amikacin, apramycin, ceftriaxone, kanamycin, nalidixic acid, and rifampin) for isolates from naturally raised cattle and conventionally raised cattle. For many of these antibiotics, MICs for isolates from organically or naturally raised cattle were greater than those for isolates from conventionally raised cattle. Resistance genes can be transferred among the enteric pathogen populations in food animals and humans (8), and it is possible that resistance genes from other bacteria in the gastrointestinal system of cattle may be acquired by E. coli O157:H7. For cattle, heavy metals like copper and zinc, which are also antimicrobial, are included in diets at concentrations in excess of the nutritional requirements, often replacing conventional antibiotics, to achieve growth promotion (5). Feeding with metals also results in the emergence of bacterial populations resistant to metals (5), which in some instances may lead to resistance to antibiotics. Mechanisms of resistance to copper at concentrations above those usually tolerated by normal cellular processes have been found on plasmids linked to resistance to antibiotics in some bacteria (5). Therefore, it is possible that isolates from organically or naturally raised cattle that are not exposed to antibiotics still may become resistant to antibiotics.

TABLE 1.

MICs of antimicrobials for E. coli O157:H7 isolates from conventionally, naturally, and organically raised beef cattle
Antibiotic agentMedian MICa (95% confidence interval) for isolates from:
P value (Wilcoxon test)
Conventionally raised cattle (n = 20)Naturally raised cattle (n = 20)Organically raised cattle (n = 20)
Amikacin2.5 (2.3-3.1)*3.9 (3.1-4.7)†2.7 (2.3-3.1)*<0.01
Apramycin9.4 (8.6-9.4)*12.5 (9.4-15.6)†6.3 (6.3-9.4)*<0.01
Cefoxitin7.8 (6.3-7.8)*7.8 (6.3-9.4)*†8.2 (7.8-10.9)†0.08
Ceftriaxone0.04 (0.04-0.05)*0.05 (NE)†0.05 (NE)†0.02
Gentamicin0.6 (0.4-0.6)†0.6 (0.5-0.8)†0.4 (0.3-0.5)*<0.01
Kanamycin3.0 (2.3-3.1)*3.9 (2.7-4.7)†2.3 (2.0-3.1)*<0.01
Nalidixic acid3.1 (3.1-3.9)*4.7 (3.9-6.3)†4.7 (3.1-6.3)†<0.01
Neomycin1.6 (1.2-1.6)†1.6 (1.2-2.3)†1.0 (0.8-1.2)*<0.01
Penicillin50.0 (NE)*50.0 (NE)*†50.0 (NE)†0.02
Rifampin6.3 (5.5-6.3)*6.3 (NE)†6.3 (6.3-12.5)†<0.01
Streptomycin9.4 (9.4-12.5)*†9.4 (9.4-12.5)†7.8 (6.3-9.4)*0.04
Tetracycline3.1 (NE)*3.1 (3.1-4.7)*†4.7 (3.1-4.7)†0.02
Open in a separate windowaMICs of all antibiotics are expressed as micrograms per milliliter, except those of penicillin, which are in international units per milliliter. For each row, values not labeled with the same symbol (* or †) are significantly different (P < 0.05) as determined by survival analysis (Wilcoxon test). NE, not estimable.Information on the prevalence and antibiotic susceptibilities of food-borne pathogens in organic or natural livestock production systems is limited and variable. In a study of organic and conventional dairy cattle farms, conventional farms were found to be more likely than organic farms to have at least one Salmonella isolate resistant to antibiotics (12). Kuhnert et al. (7) observed no difference between the prevalences of E. coli O157:H7 in samples from organic and conventional dairy farms. Sato et al. reported that E. coli isolates from conventional dairies had significantly higher rates of resistance to certain antibiotics than isolates from organic dairies (15). Cho et al. (2) compared the antibiotic susceptibilities of Shiga toxin-producing O157 and non-O157 isolates from organic and conventional dairy farms and concluded that there was no overall significant difference in resistance between isolates from the two production systems.Although organic and natural beef production systems are becoming popular, little is known about the effects of these production systems on food-borne pathogens. Because the safety of the food supply is crucial, further investigation into these production systems and their potential for altering the risk of human illness is warranted. Our study found similar prevalences of E. coli O157:H7 in the feces of organically and naturally raised beef cattle, and our prevalence estimates for cattle in these types of production systems are similar to those reported previously for conventionally raised feedlot cattle.  相似文献   

7.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37°C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10−6 CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10−4 CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10−6 CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

8.
Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1–3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.  相似文献   

9.
The objectives of the study described here were (i) to investigate the dynamics of Escherichia coli O157:H7 fecal and hide prevalence over a 9-month period in a feedlot setting and (ii) to determine how animals shedding E. coli O157:H7 at high levels affect the prevalence and levels of E. coli O157:H7 on the hides of other animals in the same pen. Cattle (n = 319) were distributed in 10 adjacent pens, and fecal and hide levels of E. coli O157:H7 were monitored. When the fecal pen prevalence exceeded 20%, the hide pen prevalence was usually (25 of 27 pens) greater than 80%. Sixteen of 19 (84.2%) supershedder (>104 CFU/g) pens had a fecal prevalence greater than 20%. Significant associations with hide and high-level hide (≥40 CFU/100 cm2) contamination were identified for (i) a fecal prevalence greater than 20%, (ii) the presence of one or more high-density shedders (≥200 CFU/g) in a pen, and (iii) the presence of one or more supershedders in a pen. The results presented here suggest that the E. coli O157:H7 fecal prevalence should be reduced below 20% and the levels of shedding should be kept below 200 CFU/g to minimize the contamination of cattle hides. Also, large and unpredictable fluctuations within and between pens in both fecal and hide prevalence of E. coli O157:H7 were detected and should be used as a guide when preharvest studies, particularly preharvest intervention studies, are designed.It is now well established that at the time of harvest, hides are the major source of Escherichia coli O157:H7 contamination on beef carcasses (1, 4, 22). Thus, reducing the levels of food-borne pathogens on cattle hides has been the focus of many pre- and postharvest research efforts. For postharvest applications, hide interventions (i.e., washing of hide-on carcasses with various antimicrobial agents) are direct approaches and have been shown to be efficacious for reducing hide and carcass contamination rates (2, 4, 5, 22).In the area of preharvest research, several approaches have been taken to reduce the prevalence of E. coli O157:H7 in feces of cattle presented for slaughter. These approaches include, among others, feeding cattle probiotics (dietary administration of beneficial bacteria to compete with E. coli O157:H7), vaccination, and bacteriophage treatment (8, 24, 30). These intervention approaches are indirect. By reducing the fecal pathogen load, the pathogen prevalence and the level on hides are reduced through lower cross-contamination at the feedlot, and subsequently, carcass contamination rates decrease. While the effectiveness of preharvest interventions varies, no preharvest intervention is 100% effective in reducing the fecal prevalence of E. coli O157:H7. It is not known what level of pathogen reduction in feces would be necessary to significantly reduce hide and carcass contamination during processing. Key pieces of information needed to address this question are the number of shedding cattle in a pen needed to contaminate the hides of most of the cattle in the same pen and at what level the shedding cattle are contaminated.Aside from the number of cattle shedding a pathogen, the concentration of the pathogen in feces plays a pivotal role in spreading the pathogen between animals. Recently, cattle shedding E. coli O157:H7 at levels of >104 CFU/g (“supershedders”) have been associated with high rates of transmission of the pathogen between cohort animals (18, 23). Matthews et al. reported that 20% of the E. coli O157:H7 infections in cattle on Scottish farms were responsible for 80% of the transmission of the organism between animals (18). Another study reported similar findings; 9% of the animals shedding E. coli O157:H7 produced over 96% of the total E. coli O157:H7 fecal load for the group (23). While a number of studies have indicated the importance of supershedders in fecal transmission dynamics, there is a general lack of information concerning the effects of high shedding rates on hide prevalence and load. Accordingly, the objectives of this study were (i) to investigate the dynamics of E. coli O157:H7 prevalence and levels in feces and on hides of feedlot cattle over time and (ii) to determine how pathogen prevalence and levels on hides in a pen are affected by individuals shedding E. coli O157:H7 at high levels.In the analysis presented here, fecal shedding was analyzed using the following three categories based on the level of E. coli O157:H7 being shed: shedding positive (presumed concentration, ≥1 CFU/g), high-density shedder (≥200 CFU/g), and supershedder (≥104 CFU/g). Several definitions of E. coli O157:H7 supershedders have been offered previously. One-time shedding levels of >103 or >104 CFU/g have been used in multiple studies (17, 23, 24), while other groups have required persistent colonization of the rectoanal junction, as well as high cell counts, for an animal to qualify as a supershedder (10). Recently, Chase-Topping et al. (9) reviewed the requirements for supershedder status and provided a working definition: an animal that excretes >104 CFU/g. In doing this, Chase-Topping et al. noted the high stringency of this definition and acknowledged that with such a definition some supershedders will be missed if they are sampled at times other than peak shedding times (9). In the current study, this was a concern. In an attempt to investigate the link between high-shedding-level animals and hide contamination, greater leeway was needed in the classification. When it is sampled on a monthly basis, an animal shedding at high levels can have a large impact on the hide status of pen cohorts between sampling intervals but not be shedding at peak levels on the day of sample collection. Hence, the categories described above were selected to analyze the relationship between fecal shedding and hide contamination.  相似文献   

10.
11.
Escherichia coli O157:H7 is an important food-borne pathogen. Often E. coli O157:H7 is difficult to detect, because it is present sporadically at very low levels together with very high levels of competitor organisms which can be difficult to distinguish phenotypically. Cultural methods are time-consuming and give variable results in the detection of E. coli O157:H7. This study examined the performance of BAX for Screening/E. coli O157:H7, a new rapid method for the detection of E. coli O157:H7, against traditional and improved cultural methods and an immunodiffusion assay. All cultural methods demonstrated inadequacy in detecting the presence of E. coli O157:H7 in inoculated samples. The limitations of these cultural methods further complicate evaluation of screening methodologies. The BAX for Screening/E. coli O157:H7 assay outperformed the other methods, with a detection rate of 96.5%, compared to 39% for the best cultural method and 71.5% for the immunodiffusion method. The BAX for Screening/E. coli O157:H7 assay proved to be a rapid, highly sensitive test for the detection of low levels of E. coli O157:H7 in ground beef.  相似文献   

12.
The simultaneous growth of Escherichia coli O157:H7 (O157) and the ground beef background microflora (BM) was described in order to characterize the effects of enrichment factors on the growth of these organisms. The different enrichment factors studied were basal medium (Trypticase soy broth and E. coli broth), the presence of novobiocin in the broth, and the incubation temperature (37°C or 40°C). BM and O157 kinetics were simultaneously fitted by using a competitive growth model. The simple competition between the two microfloras implied that O157 growth stopped as soon as the maximal bacterial density in the BM was reached. The present study shows that the enrichment protocol factors had little impact on the simultaneous growth of BM and O157. The selective factors (i.e., bile salts and novobiocin) and the higher incubation temperature (40°C) did not inhibit BM growth, and incubation at 40°C only slightly improved O157 growth. The results also emphasize that when the level of O157 contamination in ground beef is low, the 6-h enrichment step recommended in the immunomagnetic separation protocol (ISO EN 16654) is not sufficient to detect O157 by screening methods. In this case, prior enrichment for approximately 10 h appears to be the optimal duration for enrichment. However, more experiments must be carried out with ground beef packaged in different ways in order to confirm the results obtained in the present study for non-vacuum- and non-modified-atmosphere-packed ground beef.  相似文献   

13.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

14.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 10(8) CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

15.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

16.
The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ~ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species.  相似文献   

17.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

18.
This study was conducted to determine if stimulating the growth of meat starter culture (Pediococcus acidilactici) in a laboratory medium (Brain Heart Infusion broth +2.3% NaCl + 1.5% sucrose; LBHI) and during meat fermentation would control Escherichia coli O157:H7. In LBHI medium without P. acidilactici, the numbers of E. coli O157:H7 increased from 4.00 to 8.34 log10 cfu ml-1, whereas in the presence of P. acidilactici (approximately 6.0 log10 cfu ml-1) in LBHI, LBHIM (LBHI + 0.005% MnSO4), LBHIO (LBHI + 0.3 unit ml-1 Oxyrase), and LBHIMO (LBHI + M + O), the numbers of E. coli O157:H7 increased from 4.00 to 8.05, 7.50, 7.99, and 6.50 log10 cfu ml-1, respectively, after incubation at 40 degrees C for 15 h. During salami fermentation, the numbers of E. coli O157:H7 changed from 7.00 to 6.40 and 5.10 log10 cfu g-1 without and with P. acidilactici (approximately 7.0 log10 cfu g-1), respectively. Stimulated P. acidilactici by M, O, and MO further reduced the number of E. coli O157:H7 from 7.00 to 4.00, 4.80, and 3.65 log10 cfu g-1, respectively. The combination of MO was a better growth stimulator for P. acidilactici, which controlled E. coli O157:H7 in both systems (P < 0.05).  相似文献   

19.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

20.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号