首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer RNA was analyzed qualitatively as well as quantitatively from ovaries of the fresh water teleostHeteropneustes fossilis for twelve months. The tRNA samples were found to be pure and devoid of any high molecular weight RNA or DNA contaminations. The quantity of tRNA as well as its biological activity, assayed byin vitro aminoacylation using homologous aminoacyl tRNA synthetases, were found to be higher during resting and preparatory (pre-vitellogenic) phases, i.e. from November to March, as compared to vitellogenic and spawning phases of the fish, i.e. from April to October. The highest tRNA pool and its activity was found in the month of February, which coincides with the early preparatory phase. The results indicate that the accumulation of active tRNA starts in the resting phase. Such an accumulation of tRNA may be a part of the enrichment of mature eggs with complete translational machinery before ovulation in order to cope with the high rate of protein synthesis after fertilization.Abbreviations aaRS aminoacyl tRNA synthetase - [14C] APH [14C]-algal protein hydrolysate - ATP adenosine triphosphate - DTT dithiothreitol - EDTA ethylene diamine tetra acetic acid - GSI gonado somatic index - TCA trichloroacetic acid - tRNA transfer RNA  相似文献   

2.
3.
Muth GW  Hennelly SP  Hill WE 《Biochemistry》2000,39(14):4068-4074
Determining the detailed tertiary structure of 16S rRNA within 30S ribosomal subunits remains a challenging problem. The particular structure of the RNA which allows tRNA to effectively interact with the associated mRNA during protein synthesis remains particularly ambiguous. This study utilizes a chemical nuclease, 1, 10-o-phenanthroline-copper, to localize regions of 16S rRNA proximal to the decoding region under conditions in which tRNA does not readily associate with the 30S subunit (inactive conformation), and under conditions which optimize tRNA binding (active conformation). By covalently attaching 1,10-phenanthroline-copper to a DNA oligomer complementary to nucleotides in the decoding region (1396-1403), we have determined that nucleotides 923-929, 1391-1396, and 1190-1192 are within approximately 15 A of the nucleotide base-paired to nucleotide 1403 in inactive subunits, but in active subunits only cleavages (1404-1405) immediately proximal to the 5' end of the hybridized probe remain. These results provide evidence for dynamic movement in the 30S ribosomal subunit, reported for the first time using a targeted chemical nuclease.  相似文献   

4.
The secondary structure of the isolated tRNA-like sequence (n=159) present at the 3' OH terminus of turnip yellow mosaic virus RNA has been established from partial nuclease digestion with S1 nuclease and T1, CL3, and Naja oxiana RNases. The fragment folds into a 6-armed structure with two main domains. The first domain, of loose structure and nearest the 5' OH terminus, is composed of one large arm which extends into the coat protein cistron. The second, more compact domain, is composed of the five other arms and most probably contains the structure recognized by valyl-tRNA synthetase. In this domain three successive arms strikingly resemble the T[unk], anticodon, and D arms found in tRNA. Near the amino-acid accepting terminus, however, there is a new stem and loop region not found in standard tRNA. This secondary structure is compatible with a L-shaped three-dimensional organization in which the corner of the L and the anticodon-containing limb are similar to, and the amino-acid accepting region different from, that in tRNA. Ethylnitrosourea accessibility studies have shown similar tertiary structure features in the T[unk] loop of tRNAVal and in the homologous region of the viral RNA.  相似文献   

5.
6.
Certain stress conditions can induce cleavage of tRNAs around the anticodon loop via the use of the ribonuclease angiogenin. The cellular factors that regulate tRNA cleavage are not well known. In this study we used normal and eIF2α phosphorylation-deficient mouse embryonic fibroblasts and applied a microarray-based methodology to identify and compare tRNA cleavage patterns in response to hypertonic stress, oxidative stress (arsenite), and treatment with recombinant angiogenin. In all three scenarios mouse embryonic fibroblasts deficient in eIF2α phosphorylation showed a higher accumulation of tRNA fragments including those derived from initiator-tRNAMet. We have shown that tRNA cleavage is regulated by the availability of angiogenin, its substrate (tRNA), the levels of the angiogenin inhibitor RNH1, and the rates of protein synthesis. These conclusions are supported by the following findings: (i) exogenous treatment with angiogenin or knockdown of RNH1 increased tRNA cleavage; (ii) tRNA fragment accumulation was higher during oxidative stress than hypertonic stress, in agreement with a dramatic decrease of RNH1 levels during oxidative stress; and (iii) a positive correlation was observed between angiogenin-mediated tRNA cleavage and global protein synthesis rates. Identification of the stress-specific tRNA cleavage mechanisms and patterns will provide insights into the role of tRNA fragments in signaling pathways and stress-related disorders.  相似文献   

7.
Tyrosyl-tRNA synthetase from Mycobacterium tuberculosis (MtTyrRS) is an enzyme that belongs to class I of aminoacyl-tRNA synthetases, which catalyze the attachment of l-tyrosine to its cognate tRNATyr in the preribosomal step of protein synthesis. MtTyrRS is incapable of cross-recognition and aminoacylation of human cytoplasmic tRNATyr, so this enzyme may be a promising target for development of novel selective inhibitors as putative antituberculosis drugs. As a class I aminoacyl-tRNA synthetase, MtTyrRS contains the HIGH-like and KFGKS catalytic motifs that catalyze amino acid activation with ATP. In this study, the conformational mobility of MtTyrRS catalytic KFGKS loop was analyzed by 100-ns all-atoms molecular dynamics simulations of the free enzyme and its complexes with different substrates: tyrosine, ATP, and the tyrosyl–adenylate intermediate. It was shown that in the closed state of the active site, the KFGKS loop, readily adopts different stable conformations depending on the type of bound substrate. Molecular dynamics simulations revealed that the closed state of the loop is stabilized by dynamic formation of two antiparallel β-sheets at flanking ends which hold the KFGKS fragment inside the active center. Prevention of β-sheet formation by introducing point mutations in the loop sequence results in a rapid (<20 ns) transition of the loop from its functional “closed” M-like structure to an inactive “open” O-like structure, i.e. rapid diffusion of the catalytic loop outside the active site. The flexibility and rapid dynamics of the wild-type aaRS catalytic loop structure are crucial for formation of protein–substrate interactions and subsequently for overall enzyme functional activity.  相似文献   

8.
The 2.6 A resolution crystal structure of an inactive complex between yeast tRNA(Asp) and Escherichia coli aspartyl-tRNA synthetase reveals the molecular details of a tRNA-induced mechanism that controls the specificity of the reaction. The dimer is asymmetric, with only one of the two bound tRNAs entering the active site cleft of its subunit. However, the flipping loop, which controls the proper positioning of the amino acid substrate, acts as a lid and prevents the correct positioning of the terminal adenosine. The structure suggests that the acceptor stem regulates the loop movement through sugar phosphate backbone- protein interactions. Solution and cellular studies on mutant tRNAs confirm the crucial role of the tRNA three-dimensional structure versus a specific recognition of bases in the control mechanism.  相似文献   

9.
Watts JM  Gabruzsk J  Holmes WM 《Biochemistry》2005,44(17):6629-6639
Orthologs of TrmD, G37 tRNA methyltransferases, have been analyzed with regard to post-tRNA binding events required to move the residue G37 in proximity to bound AdoMet for catalysis. This was approached initially by probing tRNA with T2 nuclease or Pb acetate in the presence, then absence, of Escherichia coli TrmD protein. Cleavage patterns clearly show that portions of the anticodon loop phosphodiester backbone are protected from cleavage only in the presence of sinefungin, a potent AdoMet analogue. This demonstrates that there must be considerable movement of the loop region and/or protein as the AdoMet site is occupied. Florescence energy transfer experiments were employed to better assess the movement of the G37 and G36 base residues in response to occupancy of the AdoMet site. When the Streptococcus pneumoniae TrmD protein was bound to synthetic tRNA(1)(Leu) substituted with 2-aminopurine at positions 36 and 37, fluorescence energy transfer analysis showed that a decrease in 2-aminopurine fluorescence occurs only when AdoMet is present. Taken together, these results suggest that the base to be methylated by the TrmD protein is mobilized into the active center after tRNA binding only when the AdoMet site is occupied.  相似文献   

10.
The interaction between tRNA conformers inactive in aminoacylation and leucyl-tRNA synthetase has been investigated. Heat inactivation of the enzyme in the presence of inactive tRNA conformers is shown to lead to a marked increase of inactivation rate while active tRNA conformers, on the other hand, reveal a protecting effect. To study the properties of the enzyme complexed with different tRNA conformers limited proteolysis has been used. Active tRNA conformers are found to protect leucyl-tRNA synthetase against hydrolysis while inactive ones tend to intensify it. Inactive tRNA conformers are also shown to inhibit the aminoacylation of native tRNA in vitro. On the basis of these data biologically inactive conformers of animal tRNA are assumed to form an unproductive complex with leucyl-tRNA synthetase and the structure of the enzyme involved in such interaction is supposed to be more labile and 'extended' than that in complex with active tRNA conformers.  相似文献   

11.
12.
Lysobacter enzymogenes produced a nonspecific extracellular nuclease and an extracellular RNAase when grown in tryptone broth. Both enzyme activities appeared after the exponential growth phase of the organism. The addition of RNA to the medium specifically inhibited the production of the nuclease and the addition of phosphate prevented the synthesis of the RNAase. DNA had no effect on the enzyme production. The Lysobacter nuclease was purified 274-fold and its molecular weight was estimated to be between 22 000 and 28 000. Freshly purified nuclease showed one major protein band and one major activity band on polyacrylamide gels, whereas two major bands were seen after prolonged storage of the enzyme. The nuclease was most active at pH 8.0 and required Mg2+ or Mn2+. Little activity was obtained in the presence of Ca2+. The enzyme degraded double-stranded DNA more rapidly than single-stranded DNA or RNA and was essentially inactive with poly(A) or poly(C) as the substrate. Extensive hydrolysis of double-stranded DNA by the enzyme yielded oligodeoxyribonucleotides with terminal 5'-phosphate groups. The Lysobacter RNAase appeared to have a molecular weight approximately twice that of the nuclease and was specific for ribonucleotide polymers.  相似文献   

13.
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions.  相似文献   

14.
A model for tRNA molecule origin is discussed. The model postulates that this molecule originated simply by direct duplication (and subsequent evolution) of a gene coding for an RNA hairpin structure, which can thus be hypothesized as the evolutionary precursor of the tRNA molecule. The main properties are defined for these hairpin structures and it is suggested that these structures might have housed, near their 3' end, anticodons that were transferred to the loop of the tRNA anticodon during duplication of the hairpin structures. Moreover, the main characteristics are given for the evolutionary intermediary formed by direct duplication of the hairpin structure, i.e. the double hairpin. The evolutionary stages envisaged by this model for tRNA origin seem to naturally imply some evolutionary transitions through which the origin of protein synthesis passed. Finally, some strong historical evidence is provided to corroborate the model.  相似文献   

15.
The conformation of single-stranded nucleic acids tDNA versus tRNA   总被引:2,自引:0,他引:2  
Conformational analyses using the single-strand-specific nuclease from mung bean and restriction endonucleases have been performed on a series of DNA fragments related to the sequence of the yeast initiator tRNA(Met). Mung bean nuclease cleaves DNA fragments exclusively in some, but not all, single-stranded regions as predicted by RNA secondary structural rules. Comparison of cleavage patterns of yeast initiator tRNA(Met), tDNA(Met) (a DNA oligomer having the sequence of tRNA(Met] and the anti-tDNA(Met) (the complement of tDNA(Met] suggests that the conformation of the three molecules is very similar. Furthermore, both tDNA and anti-tDNA are cleaved by HhaI and CfoI restriction endonucleases at two GCG/C sites which would be in double-stranded regions (the acceptor and dihydrouridine stem), if the two molecules adopt the tRNA cloverleaf structure. On the other hand, minor cleavage products show that the core region, i.e. the extra loop area, is slightly more exposed in tDNA and in anti-tDNA than in tRNA. Therefore, we submit that the global conformation of nucleic acids is primarily dictated by the interaction of purine and pyrimidine bases with atoms and functional groups common to both RNA and DNA. In this view the 2'-hydroxyl group, in tRNA at least, is an auxiliary structural feature whose role is limited to fostering local interactions, which increase the stability of a given conformation.  相似文献   

16.
E. D?afi?  P. Goswami  W. Mäntele 《BBA》2009,1787(6):730-737
In this study, structural, functional, and mechanistic properties of the Na+/H+ antiporter MjNhaP1 from Methanococcus jannaschii were analyzed by infrared spectroscopic techniques. Na+/H+ antiporters are generally responsible for the regulation of cytoplasmic pH and Na+ concentration. MjNhaP1 is active in the pH range between pH 6 and pH 6.5; below and above it is inactive.The secondary structure analysis on the basis of ATR-IR spectra provides the first insights into the structural changes between inactive (pH 8) and active (pH 6) state of MjNhaP1. It results in decreased ordered structural elements with increasing the pH-value i.e. with inactivation of the protein. Analysis of temperature-dependent FTIR spectra indicates that MjNhaP1 in the active state exhibits a much higher unfolding temperature in the spectral region assigned to α-helical segments. In contrast, the temperature-induced structural changes for β-sheet structure are similar for inactive and active state. Consequently, this structure element is not the part of the activation region of the protein. The surface accessibility of the protein was analyzed by following the extent of H/D exchange. Due to higher content of unordered structural elements a higher accessibility for amide protons is observed for the inactive as compared to the active state of MjNhaP1. Altogether, the results present the active state of MjNhaP1 as the state with ordered structural elements which exhibit high thermal stability and increased hydrophobicity.  相似文献   

17.
Novel non-suppressing mutants of Escherichia coli tRNATyr su+3.   总被引:1,自引:0,他引:1       下载免费PDF全文
Several addition and deletion mutations were constructed in the region of the gene for Escherichia coli tRNATyr su+3 corresponding to the dihydrouracil loop of the mature tRNA. None of these resulting mutants had detectable suppressor function compared to the parent gene yet some directed the synthesis of mature tRNA. These latter mutants may affect the ability of the tRNA to be aminoacylated or to interact with the translational machinery on the ribosome.  相似文献   

18.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

19.
E Schmitt  S Blanquet    Y Mechulam 《The EMBO journal》1996,15(17):4749-4758
Formylation of the methionyl moiety esterified to the 3' end of tRNA(f)Met is a key step in the targeting of initiator tRNA towards the translation start machinery in prokaryotes. Accordingly, the presence of methionyl-tRNA(f)Met formyltransferase (FMT), the enzyme responsible for this formylation, is necessary for the normal growth of Escherichia coli. The present work describes the structure of crystalline E.coli FMT at 2.0 A, resolution. The protein has an N-terminal domain containing a Rossmann fold. This domain closely resembles that of the glycinamide ribonucleotide formyltransferase (GARF), an enzyme which, like FMT, uses N-10 formyltetrahydrofolate as formyl donor. However, FMT can be distinguished from GARF by a flexible loop inserted within its Rossmann fold. In addition, FMT possesses a C-terminal domain with a beta-barrel reminiscent of an OB fold. This latter domain provides a positively charged side oriented towards the active site. Biochemical evidence is presented for the involvement of these two idiosyncratic regions (the flexible loop in the N-terminal domain, and the C-terminal domain) in the binding of the tRNA substrate.  相似文献   

20.
We have determined the extent to which acute ethanol administration perturbs the synthesis of ventricular contractile and non-contractile proteins in vivo. Male Wistar rats were treated with a standard dose of ethanol (75 mmol kg?1 body weight; i.p.). Controls were treated with isovolumetric amounts of saline (0·15 mol 1?1 NaCl). Two metabolic inhibitors of ethanol metabolism were also used namely 4-methylpyrazole (alcohol dehydrogenase inhibitor) and cyanamide (acetaldehyde dehydrogenase inhibitor) which in ethanol-dosed rats have been shown to either decrease or increase acetaldehyde formation, respectively. After 2·5 h, fractional rates of protein synthesis (i.e. the percentage of tissue protein renewed each day) were measured with a large (i.e. ‘flooding’) dose of L -[4-3H]phenylalanine (150 μmol (100 g)?1 body weight into a lateral vein). This dose of phenylalanine effectively floods all endogenous free amino acid pools so that the specific radioactivity of the free amino acid at the site of protein synthesis (i.e. the amino acyl tRNA) is reflected by the specific radioactivity of the free amino acid in acid-soluble portions of cardiac homogenates. The results showed that ethanol alone and ethanol plus 4-methylpyrazole decreased the fractional rates of mixed, myofibrillar (contractile) and sarcoplasmic (non-contractile) protein synthesis to the same extent (by approx. 25 per cent). Profound inhibition (i.e. 80 per cent) in the fractional rates of mixed, myofibrillar and sarcoplasmic protein synthesis occurred when cyanamide was used to increase acetaldehyde formation. There was also a significant decrease in cardiac DNA content. The results suggest that acute ethanol-induced cardiac injury in the rat may be mediated by both acetaldehyde and ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号