共查询到20条相似文献,搜索用时 8 毫秒
1.
We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude, and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA binding. 相似文献
2.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed. 相似文献
3.
We have modeled genetic regulatory networks in the framework of continuous-time recurrent neural networks. A method for determining the parameters of such networks, given expression level time series data, is introduced and evaluated using artificial data. The method is also applied to a set of actual expression data from the development of rat central nervous system. 相似文献
4.
5.
6.
Growing genetic regulatory networks from seed genes 总被引:2,自引:0,他引:2
Hashimoto RF Kim S Shmulevich I Zhang W Bittner ML Dougherty ER 《Bioinformatics (Oxford, England)》2004,20(8):1241-1247
MOTIVATION: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. RESULTS: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. AVAILABILITY: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm 相似文献
7.
Robustness and evolvability in genetic regulatory networks 总被引:3,自引:0,他引:3
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called "critical regime" exhibit the maximum robustness and evolvability simultaneously. 相似文献
8.
Gene regulation is an intrinsically noisy process, which is subject to intracellular and extracellular noise perturbations
and environment fluctuations. In this paper, we consider the robust stability analysis problem of genetic regulatory networks
with time-varying delays and stochastic perturbation. Different from other papers, the genetic regulate system considers not
only stochastic perturbation but also parameter disturbances, it is in close proximity to the real gene regulation process
than determinate model. Based on the Lyapunov functional theory, sufficient conditions are given to ensure the stability of
the genetic regulatory networks. All the stability conditions are given in terms of LMIs which are easy to be verified. Illustrative
examples are presented to show the effectiveness of the obtained results. 相似文献
9.
Multivariate analysis of noise in genetic regulatory networks 总被引:4,自引:0,他引:4
Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations. 相似文献
10.
Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks 总被引:1,自引:0,他引:1
Shmulevich I Gluhovsky I Hashimoto RF Dougherty ER Zhang W 《Comparative and Functional Genomics》2003,4(6):601-608
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes. 相似文献
11.
12.
13.
Background
The reconstruction of genetic regulatory networks from microarray gene expression data has been a challenging task in bioinformatics. Various approaches to this problem have been proposed, however, they do not take into account the topological characteristics of the targeted networks while reconstructing them. 相似文献14.
Pal R Bhattacharya S 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2012,9(4):1230-1244
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model. 相似文献
15.
We describe Dizzy, a software tool for stochastically and deterministically modeling the spatially homogeneous kinetics of integrated large-scale genetic, metabolic, and signaling networks. Notable features include a modular simulation framework, reusable modeling elements, complex kinetic rate laws, multi-step reaction processes, steady-state noise estimation, and spatial compartmentalization. 相似文献
16.
We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. These models reduce to boolean networks in one limiting case of a parameter, and their asymptotic dynamics approaches that of a differential equation in another limiting case of this parameter. For intermediate values, the model present an original phenomenology which is argued to be due to delay effects. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle – with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects. 相似文献
17.
Qualitative simulation of genetic regulatory networks using piecewise-linear models 总被引:11,自引:0,他引:11
De Jong H Gouzé JL Hernandez C Page M Sari T Geiselmann J 《Bulletin of mathematical biology》2004,66(2):301-340
18.
This paper investigates robust stability of genetic regulatory networks with distributed delay. Different from other papers,
distributed delay is induced. It says that the concentration of macromolecule depends on an integral of the regulatory function
of over a specified range of previous time, which is more realistic. Based on Lyapunov stability theory and linear matrix
inequality (LMI), sufficient conditions for genetic regulatory networks to be global asymptotic stability and robust stability
are derived in terms of LMI. Two numerical examples are given to illustrate the effectiveness of our theoretical results. 相似文献
19.
Zhao W Serpedin E Dougherty ER 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2008,5(2):262-274
Recently, the concept of mutual information has been proposed for inferring the structure of genetic regulatory networks from gene expression profiling. After analyzing the limitations of mutual information in inferring the gene-to-gene interactions, this paper introduces the concept of conditional mutual information and based on it proposes two novel algorithms to infer the connectivity structure of genetic regulatory networks. One of the proposed algorithms exhibits a better accuracy while the other algorithm excels in simplicity and flexibility. By exploiting the mutual information and conditional mutual information, a practical metric is also proposed to assess the likeliness of direct connectivity between genes. This novel metric resolves a common limitation associated with the current inference algorithms, namely the situations where the gene connectivity is established in terms of the dichotomy of being either connected or disconnected. Based on the data sets generated by synthetic networks, the performance of the proposed algorithms is compared favorably relative to existing state-of-the-art schemes. The proposed algorithms are also applied on realistic biological measurements, such as the cutaneous melanoma data set, and biological meaningful results are inferred. 相似文献