首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation by the prokaryotic activator nitrogen regulator I (NRI, or NtrC) of Escherichia coli requires an interaction between two NRI dimers. ATP-dependent phosphorylation stimulates this tetramerization, which can be detected as cooperative binding to DNA. A polypeptide containing only the DNA-binding carboxyl-terminal domain has been previously shown to bind noncooperatively to DNA. Our primary purpose was to determine whether the highly conserved N-terminal domain or the ATP-binding central domain is required for cooperative DNA binding. Because ATP was present in the experiments that showed that phosphorylation enhances cooperative bindings, it is possible that ATP and not phosphorylation stimulated cooperative binding. Our secondary purpose was to separately assess the effects of ATP and phosphorylation on cooperative binding. We showed that a variant with a deletion of the central domain, NRI-(delta 143-398), binds cooperatively as well as unphosphorylated wild-type NRI, implying that the N-terminal domain mediates phosphorylation-independent cooperative binding. Phosphorylation of NRI-(delta 143-398) did not further stimulate this binding, suggesting that the ATP-binding central domain may be required for the phosphorylation-dependent enhancement. Cooperative binding was enhanced by either acetyl-phosphate-dependent (i.e., ATP-independent) phosphorylation of NRI or the specific binding of ATP to the central domain. Their effects were not additive, a finding which is consistent with the interpretation that each promotes a similar dimer-dimer interaction. We discuss these results within the context of the hypothesis that the highly conserved N-terminal domain mediates phosphorylation-independent cooperativity and the central domain is required for cooperativity stimulated by ATP binding or phosphorylation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
53BP1 is a key transducer of the DNA damage checkpoint signal, which is required for phosphorylation of a subset of ATM substrates and p53 accumulation. After cell irradiation, the 53BP1 N-terminal region is phosphorylated. Its two C-terminal BRCT motifs interact with p53. Its central region is required and sufficient for 53BP1 foci formation at DNA strand breaks and for 53BP1 binding to the kinetochore. It contains an RG-rich segment and interacts with DNA in vitro. Here we show that the major globular domain of the 53BP1 central region adopts a new structural motif composed of two tightly packed Tudor domains and a C-terminal alpha helix. A unique surface essentially located on the first Tudor domain is involved in the binding to 53BP1 RG-rich sequence and to DNA, suggesting that the Tudor tandem can act as an adaptor mediating intramolecular as well as intermolecular protein-protein interactions and protein-nucleic acid associations.  相似文献   

12.
BRCT domains     
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.  相似文献   

13.
Lon protease is a multifunctional enzyme, and its functions include the degradation of damaged proteins and naturally short lived proteins, ATPase and chaperone-like activities, as well as DNA binding. A thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon) has been cloned and characterized with an N-terminal domain, a central ATPase domain that includes a sensor and substrate discrimination (SSD) domain, and a C-terminal protease domain. Here we present a detailed structure-function characterization of Bt-Lon, not only dissecting the individual roles of Bt-Lon domains in oligomerization, catalytic activities, chaperone-like activity, and DNA binding activity but also describing the nature of oligomerization. Seven truncated mutants of Bt-Lon were designed, expressed, and purified. Our results show that the N-terminal domain is essential for oligomerization. The truncation of the N-terminal domain resulted in the failure of oligomerization and led to the inactivation of proteolytic, ATPase, and chaperone-like activities but retained the DNA binding activity, suggesting that oligomerization of Bt-Lon is a prerequisite for its catalytic and chaperone-like activities. We further found that the SSD is involved in DNA binding based on gel mobility shift assays. On the other hand, the oligomerization of Bt-Lon proceeds through a dimer <--> tetramer <--> hexamer assembly model revealed by chemical cross-linking experiments. The results also showed that hydrophobic interactions may play important roles in the dimerization of Bt-Lon, and ionic interactions are mainly responsible for the assembly of hexamers.  相似文献   

14.
The p53 tumor suppressor protein can bind tightly to specific sequence elements in the DNA and induce the transactivation of genes harboring such p53 binding sites. Various lines of evidence suggest that p53 binds to its target site as an oligomer. To test whether oligomerization is essential for the biological and biochemical activities of p53, we deleted a major part of the dimerization domain of mouse wild-type p53. The resultant protein, termed p53wt delta SS, was shown to be incapable of forming detectable homo-oligomers in vitro and is, therefore, likely to be predominantly if not exclusively monomeric. In agreement with the accepted model, p53wt delta SS indeed failed to exhibit measurable DNA binding in vitro. Surprisingly, though, it was still capable of suppressing oncogene-mediated transformation and of transactivating in vivo a target gene containing p53 binding sites. These findings indicate that dimerization-defective p53 is biologically active and may engage in productive sequence-specific DNA interactions in vivo. Furthermore, p53 dimerization probably leads to cooperative binding to specific DNA sequences.  相似文献   

15.
16.
17.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

18.
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero-domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.Key words: BRCT domain, DNA repair, phosphorylation, phospho-peptide interaction, protein interaction, DNA binding, DNA damage response  相似文献   

19.
Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号