首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
ddbRNA: detection of conserved secondary structures in multiple alignments   总被引:4,自引:0,他引:4  
MOTIVATION: Structured non-coding RNAs (ncRNAs) have a very important functional role in the cell. No distinctive general features common to all ncRNA have yet been discovered. This makes it difficult to design computational tools able to detect novel ncRNAs in the genomic sequence. RESULTS: We devised an algorithm able to detect conserved secondary structures in both pairwise and multiple DNA sequence alignments with computational time proportional to the square of the sequence length. We implemented the algorithm for the case of pairwise and three-way alignments and tested it on ncRNAs obtained from public databases. On the test sets, the pairwise algorithm has a specificity greater than 97% with a sensitivity varying from 22.26% for Blast alignments to 56.35% for structural alignments. The three-way algorithm behaves similarly. Our algorithm is able to efficiently detect a conserved secondary structure in multiple alignments.  相似文献   

3.
4.

Background  

β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor.  相似文献   

5.
Most bioinformatics analyses require the assembly of a multiple sequence alignment. It has long been suspected that structural information can help to improve the quality of these alignments, yet the effect of combining sequences and structures has not been evaluated systematically. We developed 3DCoffee, a novel method for combining protein sequences and structures in order to generate high-quality multiple sequence alignments. 3DCoffee is based on TCoffee version 2.00, and uses a mixture of pairwise sequence alignments and pairwise structure comparison methods to generate multiple sequence alignments. We benchmarked 3DCoffee using a subset of HOMSTRAD, the collection of reference structural alignments. We found that combining TCoffee with the threading program Fugue makes it possible to improve the accuracy of our HOMSTRAD dataset by four percentage points when using one structure only per dataset. Using two structures yields an improvement of ten percentage points. The measures carried out on HOM39, a HOMSTRAD subset composed of distantly related sequences, show a linear correlation between multiple sequence alignment accuracy and the ratio of number of provided structure to total number of sequences. Our results suggest that in the case of distantly related sequences, a single structure may not be enough for computing an accurate multiple sequence alignment.  相似文献   

6.
7.
An Y  Friesner RA 《Proteins》2002,48(2):352-366
In this work, we introduce a new method for fold recognition using composite secondary structures assembled from different secondary structure prediction servers for a given target sequence. An automatic, complete, and robust way of finding all possible combinations of predicted secondary structure segments (SSS) for the target sequence and clustering them into a few flexible clusters, each containing patterns with the same number of SSS, is developed. This program then takes two steps in choosing plausible homologues: (i) a SSS-based alignment excludes impossible templates whose SSS patterns are very different from any of those of the target; (ii) a residue-based alignment selects good structural templates based on sequence similarity and secondary structure similarity between the target and only those templates left in the first stage. The secondary structure of each residue in the target is selected from one of the predictions to find the best match with the template. Truncation is applied to a target where different predictions vary. In most cases, a target is also divided into N-terminal and C-terminal fragments, each of which is used as a separate subsequence. Our program was tested on the fold recognition targets from CASP3 with known PDB codes and some available targets from CASP4. The results are compared with a structural homologue list for each target produced by the CE program (Shindyalov and Bourne, Protein Eng 1998;11:739-747). The program successfully locates homologues with high Z-score and low root-mean-score deviation within the top 30-50 predictions in the overwhelming majority of cases.  相似文献   

8.
9.
Genome-wide multiple sequence alignments (MSAs) are a necessary prerequisite for an increasingly diverse collection of comparative genomic approaches. Here we present a versatile method that generates high-quality MSAs for non-protein-coding sequences. The NcDNAlign pipeline combines pairwise BLAST alignments to create initial MSAs, which are then locally improved and trimmed. The program is optimized for speed and hence is particulary well-suited to pilot studies. We demonstrate the practical use of NcDNAlign in three case studies: the search for ncRNAs in gammaproteobacteria and the analysis of conserved noncoding DNA in nematodes and teleost fish, in the latter case focusing on the fate of duplicated ultra-conserved regions. Compared to the currently widely used genome-wide alignment program TBA, our program results in a 20- to 30-fold reduction of CPU time necessary to generate gammaproteobacterial alignments. A showcase application of bacterial ncRNA prediction based on alignments of both algorithms results in similar sensitivity, false discovery rates, and up to 100 putatively novel ncRNA structures. Similar findings hold for our application of NcDNAlign to the identification of ultra-conserved regions in nematodes and teleosts. Both approaches yield conserved sequences of unknown function, result in novel evolutionary insights into conservation patterns among these genomes, and manifest the benefits of an efficient and reliable genome-wide alignment package. The software is available under the GNU Public License at http://www.bioinf.uni-leipzig.de/Software/NcDNAlign/.  相似文献   

10.
11.

Background  

With the continued development of new computational tools for multiple sequence alignment, it is necessary today to develop benchmarks that aid the selection of the most effective tools. Simulation-based benchmarks have been proposed to meet this necessity, especially for non-coding sequences. However, it is not clear if such benchmarks truly represent real sequence data from any given group of species, in terms of the difficulty of alignment tasks.  相似文献   

12.
13.
MOTIVATION: Multiple sequence alignment is an essential part of bioinformatics tools for a genome-scale study of genes and their evolution relations. However, making an accurate alignment between remote homologs is challenging. Here, we develop a method, called SPEM, that aligns multiple sequences using pre-processed sequence profiles and predicted secondary structures for pairwise alignment, consistency-based scoring for refinement of the pairwise alignment and a progressive algorithm for final multiple alignment. RESULTS: The alignment accuracy of SPEM is compared with those of established methods such as ClustalW, T-Coffee, MUSCLE, ProbCons and PRALINE(PSI) in easy (homologs) and hard (remote homologs) benchmarks. Results indicate that the average sum of pairwise alignment scores given by SPEM are 7-15% higher than those of the methods compared in aligning remote homologs (sequence identity <30%). Its accuracy for aligning homologs (sequence identity >30%) is statistically indistinguishable from those of the state-of-the-art techniques such as ProbCons or MUSCLE 6.0. AVAILABILITY: The SPEM server and its executables are available on http://theory.med.buffalo.edu.  相似文献   

14.
The programs described herein function as part of a suite ofprograms designed for pairwise alignment, multiple alignment,generation of randomized sequences, production of alignmentscores and a sorting routine for analysis of the alignmentsproduced. The sequence alignment programs penalize gaps (absencesof residues) within regions of protein secondary structure andhave the added option of ‘fingerprinting’ structurallyor functionally important protein residues. The multiple alignmentprogram is based upon the sequence alignment method of Needlemanand Wunsch and the multiple alignment extension of Barton andSternberg. Our application includes the feature of optionallyweighting active site, monomer-monomer, ligand contact or otherimportant template residues to bias the alignment toward matchingthese residues. A sum-score for the alignments is introduced,which is independent of gap penalties. This score more adequatelyreflects the character of the alignments for a given scoringmatrix than the gap-penalty-dependent total score describedpreviously in the literature. In addition, individual aminoacid similarity scores at each residue position in the alignmentsare printed with the alignment output to enable immediate quantitativeassessment of homology at key sections of the aligned chains.  相似文献   

15.
Niu W  Jiang N  Hu Y 《Analytical biochemistry》2007,362(1):126-135
A number of different ligands have been tested in the course of the development of protein array technology. The most extensively studied example of protein ligands has been based on antibody-antigen interaction. Other examples include protein-protein, protein-nucleic acid, and protein-small molecule interactions. All these ligands can recognize and specifically bind to protein epitopes. In this study, we have developed a novel technology using DNA-based aptamers to detect proteins based on their amino acid sequences. Mouse cathepsin D was used for the proof of principle experiment. Four tripeptides, Leu-Ala-Ser, Asp-Gly-Ile, Gly-Glu-Leu, and Lys-Ala-Ile, were selected based on the published amino acid sequence of mouse cathepsin D. DNA aptamers against the tripeptides were isolated using the systematic evolution of ligands of exponential enrichment method. We have demonstrated that the aptamers specifically interacted with mouse cathepsin D using the structure-switch method. We further performed a proximity-dependent ligation assay to demonstrate that multiple aptamers could specifically detect the protein from cell extracts. In principle, one library containing 8000 aptamers should be enough to detect almost all proteins in the whole proteome in all organisms. This technology could be applied to generate a new generation of protein arrays.  相似文献   

16.
Comparing multiple RNA secondary structures using tree comparisons   总被引:2,自引:0,他引:2  
In a previous paper, an algorithm was presented for analyzingmultiple RNA secondary structures utilizing a multiple stringalignment algorithm. In this paper we present another approachto the problem of comparing many secondary structures by utilizinga very efficient tree-matching algorithm that will compare twotrees in O(|T1|x|T2|x L1 x L2) in the worst case and very closeto O(|T1|x|T2|) for average trees representing secondary structures.The result of the pairwise comparison algorithm is then usedwith acluster algorithm to produce a multiple structure clusteringwhich can be displayed in ataxonomy tree to show related structures. Received on September 15, 1989; accepted on June 12, 1990  相似文献   

17.
18.
19.
Supersecondary structures of proteins have been systematically searched and classified, but not enough attention has been devoted to such large edifices beyond the basic identification of secondary structures. The objective of the present study is to show that the association of secondary structures that share some of their backbone residues is a commonplace in globular proteins, and that such deeper fusion of secondary structures, namely extended secondary structures (ESSs), helps stabilize the original secondary structures and the resulting tertiary structures. For statistical purposes, a set of 163 proteins from the protein databank was randomly selected and a few specific cases are structurally analyzed and characterized in more detail. The results point that about 30% of the residues from each protein, on average, participate in ESS. Alternatively, for the specific cases considered, our results were based on the secondary structures produced after extensive Molecular Dynamics simulation of a protein–aqueous solvent system. Based on the very small width of the time distribution of the root mean squared deviations, between the ESS taken along the simulation and the ESS from the mean structure of the protein, for each ESS, we conclude that the ESSs significantly increase the conformational stability by forming very stable aggregates. The ubiquity and specificity of the ESS suggest that the role they play in the structure of proteins, including the domains formation, deserves to be thoroughly investigated.  相似文献   

20.
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号