首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Twelve derivatives of Escherichia coli strain HB101 which contained different sizes of plasmids ranging from 3.9 Kb to 48 Kb and encoding resistance to various antibiotics were used. When these organisms were introduced into natural river water, the population declined rapidly and by day 3, the majority (i.e. more than 99.9%) of them could no longer be detected on antibiotic-amended culture plates. If the river water was filter sterilized first, the added organisms maintained their population for up to 7 d without any significant decrease in numbers. Similar results were also observed in sterilized tap water or distilled water. This indicated that the disappearance of these organisms in the aquatic environment was caused mainly by biotic factor(s). The loss of the ability to grow in the presence of antibiotics by some of the E. coli was not observed unless they were allowed to grow in the antibiotic-free environment first. When the test organisms were added to natural silt loam, a large portion of the original population still remained viable after 16 d. There was no relationship between the percentage survival of E. coli in natural river water and the sizes of plasmid harboured. On the other hand, when these bacteria were added to natural soil, survival appeared to increase as plasmid size increased. and accepted 19 August 1989  相似文献   

2.
The enzymatic activity and viability of Escherichia coli O157:H7 in natural river water was determined by flow cytometry. River water was collected at two sites (an agricultural area and an industrial area) on the Aigawa River (Osaka, Japan). To facilitate estimation of the physiology of E. coli O157 in natural river water, bacterial cells in the water were stained with 6-carboxyfluorescein diacetate (6CFDA) and propidium iodide (PI). The cells were sorted into two populations, using a flow cytometer, based on their esterase activity. Each population was stained with E. coli O157:H7 fluorescent antibody (FA), and E. coli O157:H7 cells were observed in the esterase-active population. River water samples collected at the same points were incubated with yeast extract containing antibiotics to prevent cell division, and bacterial cells in the incubated samples were stained with PI and FA. Escherichia coli O157:H7 existed in both the viable (elongated and/or fattened) and inactive bacterial population determined by flow cytometry. These results indicate that E. coli O157:H7 may retain metabolic activity and growth potential in the natural aquatic environment.  相似文献   

3.
Survival of Yersinia enterocolitica in the environment   总被引:1,自引:0,他引:1  
When Yersinia enterocolitica was introduced into soils (or physiological saline), very little decrease in the population was observed throughout the test period. If the soil was allowed to air dry slowly, only 0.1% (2.8 x 10(3) colony forming units/g of soil) of the original population added still remained viable by day 10. On the other hand, the introduced organisms disappeared rapidly in river water but their longevities could be extended significantly if a eucaryote inhibitor was added to the river water or the river water was passed through a 0.8-micron membrane filter to remove eucaryotic predators. Furthermore, the rapid decrease of the Yersinia population coincided with an increase in numbers of protozoans. However, when Yersinia was added to filter-sterilized river water or when small numbers of the organism, below the threshold level believed necessary for active predation to occur, were added to the river water, no response in predators was observed; nevertheless, the population of Yersinia still showed a continued decline. When the organism was introduced into sephadex-treated river water or groundwater, its survival improved significantly compared with its survival in nontreated water samples. Low ambient temperature dramatically increased its ability to survive in the aquatic environment. It is concluded that, in addition to the temperature factor, the longevity of Y. enterocolitica in river water is chiefly regulated by predators and toxin producers.  相似文献   

4.
We have used an Escherichia coli strain DH5a containing pGreenTIR to study the survival of this bacterium in river water. As green fluorescence was maintained throughout survival both in dark and illuminated conditions, gfp-tagged E. coli cells were clearly distinguished from the microbial community of the river Butrón. gfp-tagged E. coli cells were monitored to estimate total density as well as the density of the culturable and viable (active electron transport system, CTC+) cells. Our results indicate that autochthonous bacteria and introduced E. coli are predated by flagellates. The autochthonous bacterial community behaves as predation-escaping prey, showing a tendency to cellular miniaturization and so maintaining the density of the population. In contrast, introduced E. coli behaves as predation-non-escaping prey, so E. coli was eliminated from the system. When comparing the elimination by predation of heat-treated and non-heated gfp-tagged E. coli cells we deduce that the flagellates do not discriminate between live and heat-treated cells. Finally, in the presence of the river microbial community, the E. coli cells appeared to be ingested before cellular deterioration could occur. Thus predation reduces the quantitative importance of the viable but nonculturable (VBNC) population of E. coli in the aquatic systems.  相似文献   

5.
The survival of Escherichia coli in organic soils (Histosols) was examined. The death rate of this organism in Pahokee muck was less than that observed in Pompano fine sand. The number of viable E. coli cells found in the muck was approximately threefold greater than that found in the sand following 8 days of incubation. The initial population of the coliform affected the death rate. The rate of loss of viability varied 100-fold when the population size decreased from 2.5 x 10(7) to 3.4 x 10(4). Other factors affecting the viability of E. coli in muck were aerobic versus anaerobic growth of the organism and moist versus flooded conditions in the soil. The greatest survival of the coliform was noted with anaerobically grown cells amended to flooded soil. That the observed decrease in E. coli viability in soil was the result of biotic factors was demonstrated with amendment of sterile soil with E. coli. When 1.1 x 10(5) bacteria per g of soil were added to sterile muck, a population of 3.0 x 10(7) organisms per g of soil developed over a 10-day period. The role of the protozoa in eradication of the coliform from the muck was indicated by a sixfold increase in the protozoan population in natural soil amended with E. coli. Higher organic matter content in a Histosol compared with a mineral soil resulted in an increased survival of the fecal coliforms. Biotic factors are instrumental in the decline in coliform populations, but the potential for growth of the coliform in the organic soil could extend the survival of the organism.  相似文献   

6.
Long-term starvation-induced loss of antibiotic resistance in bacteria   总被引:2,自引:0,他引:2  
Escherichia coli, Pseudomonas fluorescens, and aPseudomonas sp. strain 133B containing the pSa plasmid were starved in well water for up to 523 days. There were two patterns of apparent antibiotic resistance loss observed. InPseudomonas sp. strain 133B, there was no apparent loss of antibiotic resistance even after starvation for 340 days. InE. coli, by day 49 there was a ten-fold difference between the number of cells that would grow on antibiotic- and nonantibiotic-containing plates. However, over 76% of the cells that apparently lost their antibiotic resistance were able to express antibiotic resistance after first being resuscitated on non-selective media. By day 523, only 12% of these cells were able to express their antibiotic resistance after being resuscitated. After starvation for 49 days, cells that could not grow on antibiotic medium even after resuscitation, showed a permanent loss of chloramphenicol (Cm) resistance but retained resistance to kanamycin (Km) and streptomycin (Sm). Restriction enzyme digests show that a 2.5 to 3.0 Kb region from map location 12.5 to 15.5 Kb was deleted. This coincides with the 2.5 Kb reduction in plasmid size observed in 3 isolates that had lost antibiotic resistance after starvation for 49 days.Published as Technical Paper #9224, Oregon Agricultural Experiment Station.  相似文献   

7.
Salmonella abortus equi vaccine strains were found to be resistant to high levels of toxic heavy metals--arsenic, chromium, cadmium, and mercury. The two strains 157 and 158 were resistant to ampicillin also. Curing of these strains resulted in loss of one or more resistance marker indicating plasmid borne resistance. Plasmid profile of strain 157 showed presence of three plasmids of 85, 54, and 0.1 Kb, whereas 158 strain showed presence of 85 Kb and 2 Kb plasmids. Plasmids were isolated from strain 157 and introduced into E. coli DH5alpha with a transformation efficiency of 2 x 10(3) transformants/microg DNA. Interestingly the transformants were resistant to antibiotics, heavy metals (As, Cr, Cd, Hg) and was also able to utilize citrate, a trait specific to Salmonella species. We report and establish for the first time the transferable large plasmids encoding resistance to various heavy metals, antibiotics and biochemical nature of S. abortus equi.  相似文献   

8.
Characterization and cloning of enterotoxin genes of Salmonella typhimurium   总被引:2,自引:0,他引:2  
Five of fifty five strains of Salmonella typhimurium of human origin was hybridized with both the LT-A and LT-B gene of Escherichia coli. The remarkably erythromatous and indurated response on rabbit skin and significant elongation of Chinese Hamster Ovary (CHO) cells indicated the production of enterotoxin of these isolates. The Salmonella enterotoxin is heat-labile and is not a secretory product. The LT gene of E. coli was used to analyze the chromosome and plasmid DNA from Salmonella typhimurium strains for toxin gene sequences. Southern blot analysis demonstrated that the toxin gene was located on the plasmid but not on the chromosome. Restriction enzymes BamHI, EcoRI, HindIII and PstI were used to analyze the DNA isolated from salmonella strains Nos.22, 52, 55 and 59. Three DNA fragments with size of 5.2 Kb of strain 22, 5.0 Kb of strain 52 and 8.6 Kb of strain 59 were identified as containing the enterotoxin gene. Plasmid pUC19 was used as the vector to clone these DNA fragments in E. coli. The rabbit skin permeability test indicated that Salmonella enterotoxin could be synthesized at readily detectable levels in these transformed E. coli.  相似文献   

9.
AIMS: The aim of this study was to deterimine the survival of an enteric bacterium in anaerobic groundwater and effluent microcosms using the green fluorescent protein (GFP) marker gene in combination with the viability indicator propidium iodide (PI). METHODS AND RESULTS: The pEGFP vector (Clontech) was transformed into Escherichia coli DH5alpha and was stable for at least 100 generations of growth in nonselective medium at 28 degrees C and 37 degrees C. Using an epifluorescent microscope, GFP cells could be detected under blue light (450-490 nm) and the numbers of PI-positive GFPs could be detected under green light (530-560 nm). GFP-tagged E. coli could be detected for at least 132 d in sterilized water microcosms. GFP fluorescence was not lost from the culturable cell population for the duration of the experiment. However, a slow decline in the number of GFP-fluorescent cells in sterilized groundwater was observed. Escherichia coli die-off and loss of green fluorescence was more rapid in nonsterilized waters than in sterilized. Viable numbers of the GFP-tagged E. coli determined by PI counterstaining were compatible with numbers of colony-forming units. CONCLUSIONS: The long-term survival of E. coli and maintainance of GFP-conferred fluorescence in these cells was demonstrated in both groundwater and effluent, under sterilized conditions. However, severe starvation and/or the presence of indigenous microorganisms were found to be factors affecting the maintenance of fluorescence in dead or dying cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the successful application of PI with GFP-tagging to monitor long-term bacterial survival in nutrient-limited conditions and mixed microbial populations.  相似文献   

10.
Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.  相似文献   

11.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

12.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

13.
Mass cultures of an Escherichia coli K-12 strain were released into exposed mesocosms in a eutrophic lake. The release was performed with and without additional input of the E. coli culture medium to stimulate the scenario of leakage of a production fermenter on one hand and to compare the influence of the added organic nutrients with that of the added strain on the other hand. The survival of the introduced strain and the influence on ecological processes in the mesocosms were monitored for 10 weeks after release. For comparison, survival of the strain in microcosms with sterile lake water was also monitored. Survival of the strain was determined by means of immunofluorescence and growth on selective agar medium. In lake mesocosms, E. coli showed a rapid and constant dieback during the first week. After 4 days, cells were mostly restricted to particles, which seemed to provide niches for survival. From the second week onward, survival was improved in mesocosms with culture medium added. In microcosms with sterile lake water, plate counts of E. coli showed a strong decrease within 2 weeks, while total cell numbers remained approximately the same. The rapid elimination of E. coli from the free-water phase of the mesocosms was probably due to the combined effect of the inability to grow in lake water and grazing. The better survival of E. coli (mainly on particles) in mesocosms with added medium was attributed to the medium-induced enhancement of primary production, which was the source of a large quantity of particles. These particles, in turn, may have functioned as niches for prolonged survival as well as transport vehicles for sedimentation of the E. coli cells.  相似文献   

14.
Mass cultures of an Escherichia coli K-12 strain were released into exposed mesocosms in a eutrophic lake. The release was performed with and without additional input of the E. coli culture medium to stimulate the scenario of leakage of a production fermenter on one hand and to compare the influence of the added organic nutrients with that of the added strain on the other hand. The survival of the introduced strain and the influence on ecological processes in the mesocosms were monitored for 10 weeks after release. For comparison, survival of the strain in microcosms with sterile lake water was also monitored. Survival of the strain was determined by means of immunofluorescence and growth on selective agar medium. In lake mesocosms, E. coli showed a rapid and constant dieback during the first week. After 4 days, cells were mostly restricted to particles, which seemed to provide niches for survival. From the second week onward, survival was improved in mesocosms with culture medium added. In microcosms with sterile lake water, plate counts of E. coli showed a strong decrease within 2 weeks, while total cell numbers remained approximately the same. The rapid elimination of E. coli from the free-water phase of the mesocosms was probably due to the combined effect of the inability to grow in lake water and grazing. The better survival of E. coli (mainly on particles) in mesocosms with added medium was attributed to the medium-induced enhancement of primary production, which was the source of a large quantity of particles. These particles, in turn, may have functioned as niches for prolonged survival as well as transport vehicles for sedimentation of the E. coli cells.  相似文献   

15.
Enteric Bacterial Growth Rates in River Water   总被引:15,自引:12,他引:3  
Enteric bacteria, including stocked strains of pathogenic species and organisms naturally present in the stream, were capable of growth in a chemostat with autoclaved river water taken 750 m below a sewage outfall. Maximal specific growth rates for all organisms occurred at 30 C, whereas culture generation times ranged between 33.3 and 116 hr. Of the six laboratory strains of enteric species used, Escherichia coli and Enterobacter aerogenes grew at generation times of 34.5 and 33.3 hr, respectively, while the remaining Proteus, Arizona, Salmonella, and Shigella spp. reproduced at a rate two to three times slower than the coliforms. Little or no growth occurred in the water at incubation temperatures of 20 and 5 C, and death was observed for Salmonella senftenberg at 20 and 5 C and for E. aerogenes and Proteus rettgeri at 5 C. When enteric bacteria naturally present in the river water were employed in similar experiments, coliform bacteria demonstrated a generation time of approximately 116 hr, whereas fecal coliforms failed to grow. Growth of the bacteria from the river demonstrated a periodicity of approximately 100 hr, which suggests that much of the growth of these organisms in the chemostat may be on the glass surfaces. This phenomenon, however, was not observed with any of the stocked enteric species. Neither the stock cultures nor the aquatic strains were capable of growth in autoclaved river water taken above the sewage outfall at the three temperatures tested.  相似文献   

16.
The practical task of adapting an original potentiometric technique to the bacteriological analysis of water is discussed. Various laboratory strains of organisms belonging to the usual aquatic flora were inoculated one by one in a minimal lactose broth supplied with lipoic (thioctic) acid. The time evolution of the redox potential of the cultures was followed during incubation by combined gold versus reference electrodes. When the incubation temperature was regulated at 36 degrees C, most organisms were able to grow and to reduce the coenzyme, generating changes in the redox potential of the culture. However, very few organisms developed significant reductive activity when the temperature was increased to 41 degrees C and when the broth was provided with sodium deoxycholate. Among the fecal coliform organisms, only Escherichia coli and Klebsiella pneumoniae exhibited early but reproducible potential-time responses. Positive potentiometric responses were also recorded with Acinetobacter calcoaceticus. E. coli showed rapid potentiometric signals as compared with K. pneumoniae. The time required for 100-mV shift of potential to be detected was related to the logarithm of the initial concentration of E. coli or K. pneumoniae in the culture broth. Experiments on natural surface water samples showed the the potentiometric method, associated with the selective incubation conditions, mainly detected E. coli among the bacterial flora of the tested environmental water. The calibration curve relating the time required for a 100-mV shift of potential to be detected to the number of fecal coliforms, as determined by control fecal coliform-selective plate counts, was consistent with the composite standard curve of detection times obtained with six different laboratory strains of E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The practical task of adapting an original potentiometric technique to the bacteriological analysis of water is discussed. Various laboratory strains of organisms belonging to the usual aquatic flora were inoculated one by one in a minimal lactose broth supplied with lipoic (thioctic) acid. The time evolution of the redox potential of the cultures was followed during incubation by combined gold versus reference electrodes. When the incubation temperature was regulated at 36 degrees C, most organisms were able to grow and to reduce the coenzyme, generating changes in the redox potential of the culture. However, very few organisms developed significant reductive activity when the temperature was increased to 41 degrees C and when the broth was provided with sodium deoxycholate. Among the fecal coliform organisms, only Escherichia coli and Klebsiella pneumoniae exhibited early but reproducible potential-time responses. Positive potentiometric responses were also recorded with Acinetobacter calcoaceticus. E. coli showed rapid potentiometric signals as compared with K. pneumoniae. The time required for 100-mV shift of potential to be detected was related to the logarithm of the initial concentration of E. coli or K. pneumoniae in the culture broth. Experiments on natural surface water samples showed the the potentiometric method, associated with the selective incubation conditions, mainly detected E. coli among the bacterial flora of the tested environmental water. The calibration curve relating the time required for a 100-mV shift of potential to be detected to the number of fecal coliforms, as determined by control fecal coliform-selective plate counts, was consistent with the composite standard curve of detection times obtained with six different laboratory strains of E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Bacteria with a stochastic conditional lethal containment system have been constructed. The invertible switch promoter located upstream of the fimA gene from Escherichia coli was inserted as expression cassette in front of the lethal gef gene deleted of its own natural promoter. The resulting fusion was placed on a plasmid and transformed to E. coli. The phenotype connected with the presence of such a plasmid was to reduce the population growth rate with increasing significance as the cell growth rate was reduced. In very fast growing cells, there was no measurable effect on growth rate. When a culture of E. coli harboring the plasmid comprising the containment system is left as stationary cells in suspension without nutrients, viability drops exponentially over a period of several days, in contrast to the control cells, which maintain viability nearly unaffected during the same period of time. Similar results were obtained with a strain in which the killing cassette was inserted in the chromosome. In competition with noncontained cells during growth, the contained cells are always outcompeted. Stochastic killing obtained by the fim-gef fusion is at present relevant only as a containment approach for E. coli, but the model may be mimicked in other organisms by using species-specific stochastic expression systems.  相似文献   

19.
The influence of nutrients in wastewater from dairy lagoons on the survival of Escherichia coli O157:H7 was monitored. Initially, the survival of E. coli O157:H7 in wastewater from which the competing native organisms had been removed by filter sterilization or autoclaving was compared with that in wastewater from which competing organisms had not been removed. Numbers of E. coli O157:H7 or E. coli ONT (O-nontypeable):H32 cells declined rapidly in filter-sterilized water and exhibited a slower decline in nonsterile water, while the organisms proliferated in autoclaved water. Subsequently, the growth of E. coli O157:H7 strains was monitored in 300 mul of Luria-Bertani (LB) broth supplemented with incremental proportions of filter-sterilized wastewater. E. coli O157:H7 and E. coli ONT:H32 strains failed to grow in filter-sterilized wastewater, and their growth was reduced incrementally with wastewater supplementation of LB broth. Consequently, the influence of organic extracts of wastewater on the growth of E. coli O157:H7 and E. coli ONT:H32 in reduced-strength LB was monitored, followed by scale-up tests in wastewater. Acidic and basic extracts inhibited growth of both strains, while the neutral aqueous extract improved growth. However, a scale-up with a threefold increase in the acidic components supplementing the wastewater did not result in any additional decline in numbers of E. coli O157:H7 cells. When protected inside a 300-kDa dialysis tube and exposed to diffusible components, E. coli O157:H7 survived longer, with a decimal reduction time of 18.1 days, compared to 3.5 days when inoculated directly into wastewater. Although wastewater can potentially provide nutrients to naturally occurring human pathogens, the chemical components, protozoa, and coliphages in wastewater can inhibit the growth of freshly introduced pathogens from manure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号