首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.  相似文献   

4.
5.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

6.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

7.
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.  相似文献   

8.
RasGRP1 is a guanine nucleotide exchange factor for Ras that is required for the efficient production of both CD4 and CD8 single-positive thymocytes. We found that RasGRP1 expression is rapidly up-regulated in double-negative thymocytes following pre-TCR ligation. Transgenic overexpression of RasGRP1 compensated for deficient pre-TCR signaling in vivo, enabling recombinase-activating gene 2(-/-) double-negative thymocytes to mature to the double-positive stage. RasGRP1 transgenic mice had a 4-fold increase in CD8 single-positive thymocytes, most of which had atypically low levels of CD3. The RasGRP1 transgene lowered the threshold of TCR signaling needed to initiate proliferation of single-positive thymocytes, with this effect being particularly evident among CD8 single-positive cells. In 3-day cultures, TCR stimulation via anti-CD3 caused a 10-fold increase in the ratio of CD8 to CD4 thymocytes among RasGRP1 transgenic vs nontransgenic thymocytes. These results demonstrate that in addition to driving the double-negative to double-positive transition, increased expression of RasGRP1 selectively increases CD8 single-positive thymocyte numbers and enhances their responsiveness to TCR signaling.  相似文献   

9.
10.
11.
The pre-TCR promotes thymocyte development in the alphabeta lineage. Productive rearrangement of the TCRbeta locus triggers the assembly of the pre-TCR, which includes the pTalpha chain and CD3 epsilongammadeltazeta subunits. This complex receptor signals the up-regulation of CD4 and CD8 expression, thymocyte proliferation/survival, and the cessation of TCRbeta rearrangements (allelic exclusion). In this study, we investigate the function of two conserved tyrosine residues located in the TCRbeta chain transmembrane region of the pre-TCR. We show that replacement of both tyrosines with alanine and expression of the mutant receptor in RAG-1(null) thymocytes prevents surface expression and abolishes pre-TCR function relative to wild-type receptor. Replacement of both tyrosines with phenylalanines (YF double mutant) generates a complex phenotype in which thymocyte survival and proliferation are severely disrupted, differentiation is moderately disrupted, and allelic exclusion is unaffected. We further show that the YF double mutant receptor is expressed on the cell surface and associates with pTalpha and CD3epsilon at the same level as does wild-type TCRbeta, while association of the YF double mutant with CD3zeta is slightly reduced relative to wild type. These data demonstrate that pre-TCR signaling pathways leading to proliferation and survival, differentiation, and allelic exclusion are differently sensitive to subtle mutation-induced alterations in pre-TCR structure.  相似文献   

12.
Bcl11b(-/-) mice show developmental arrest at the CD44(-)CD25(+) double-negative 3 (DN3) or immature CD8(+)single-positive stage of alphabeta T cell. We have performed detailed analysis of sorted subsets of Bcl11b(-/-) thymocytes, DN3 and CD44(-)CD25(-) double-negative 4 (DN4) cells. Surface expression of TCRbeta proteins was not detected in DN3 thymocytes and markedly reduced in DN4 thymocytes, whereas expression within the cell was detected in both, suggesting some impairment in processing of TCRbeta proteins from the cytoplasm to the cell surface. This lack of expression, resulting in the absence of pre-TCR signaling, could be responsible for the arrest, but the transgenic TCRbeta or TCRalphabeta expression on the cell surface failed to promote transition from the DN3 to CD4(+)CD8(+) double-positive stage of development. This suggests that the pre-TCR signal cannot compensate the deficiency of Bcl11b for development. Bcl11b(-/-) DN3 thymocytes showed normal DNA rearrangements between Dbeta and Jbeta segments but limited DNA rearrangements between Vbeta and DJbeta without effect of distal or proximal positions. Because this impairment may be due to chromatin accessibility, we have examined histone H3 acetylation in Bcl11b(-/-) DN3 cells using chromatin immunoprecipitation assay. No change was observed in acetylation at the Vbeta and Dbeta gene locus. Analysis of Bcl11b(-/-) DN4 thymocytes showed apoptosis, accompanied with lower expression of anti-apoptotic proteins, Bcl-x(L) and Bcl-2, than wild-type DN4 thymocytes. Interestingly, the transgenic TCRalphabeta in those cells reduced apoptosis and raised their protein expression without increased cellularity. These results suggest that Bcl11b deficiency affects many different signaling pathways leading to development arrests.  相似文献   

13.
Productive rearrangement of the T-cell receptor (TCR) beta gene and signalling through the pre-TCR-CD3 complex are required for survival, proliferation and differentiation of T-cell progenitors (pro-T cells). Here we identify a role for death receptor signalling in early T-cell development using a dominant-negative mutant of the death receptor signal transducer FADD/MORT1 (FADD-DN). In rag-1(-/-) thymocytes, which are defective in antigen receptor gene rearrangement, FADD-DN bypassed the requirement for pre-TCR signalling, promoting pro-T-cell survival and differentiation to the more mature pre-T stage. Surprisingly, differentiation was not accompanied by the proliferation that occurs normally during transition to the pre-T stage. Consistent with a role for FADD/MORT1 in this cell division, FADD-DN rag-1(-/-) pro-T cells failed to proliferate in response to CD3epsilon ligation. Concomitant signalling through the pre-TCR and death receptors appears to trigger pro-T cell survival, proliferation and differentiation, whereas death receptor signalling in thymocytes that lack a pre-TCR induces apoptosis. Later in life all FADD-DN rag-1(-/-) mice developed thymic lymphoma, indicating that FADD/MORT1 can act as a tumour suppressor.  相似文献   

14.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

15.
16.
17.
18.
En route to maturing as T cell receptor (TCR) alphabeta-expressing cells, the development of thymocytes is contingent on expression of a pre-TCR complex comprising a TCRbeta chain paired with a surrogate TCRalpha chain, pre-Talpha (pTalpha). The pre-TCR has been proposed to promote cell survival, proliferation, differentiation, and lineage commitment. However, the precise molecular mechanisms governing this variety of effects remain elusive. Here, we present a cellular system designed to biochemically dissect signals elicited upon pre-TCR expression. Using the T cell line 4G4 stably transfected with one of the two known pTalpha isoforms or selective pTalpha deletion mutants and TCRbeta, we were able to observe that expression of a functional pre-TCR complex is sufficient to control the levels of surface Fas protein, the stimulation of mitogen-activated and stress-regulated kinases, and the activation status of the p53 antioncogene. We demonstrate that this regulation has a major impact on the expression of important regulators of apoptosis, such as Bcl-2 family members, and the cell cycle, such as p21(WAF). Furthermore, we show here that cells expressing a functional pre-TCR are more resistant to different types of DNA damage-induced apoptosis and that these effects are contingent on an intact cytoplasmic tail of pTalpha. We finally propose that the presence of a functional pre-TCR complex triggers many intracellular pathways capable of driving and ensuring thymocyte survival in the presence of DNA damage.  相似文献   

19.
To investigate the consequences of the simultaneous expression in progenitor cells of a TCRgammadelta and a pre-TCR on alphabeta/gammadelta lineage commitment, we have forced expression of functionally rearranged TCRbeta, TCRgamma, and TCRdelta chains by means of transgenes. Mice transgenic for the three TCR chains contain numbers of gammadelta thymocytes comparable to those of mice transgenic for both TCRgamma and TCRdelta chains, and numbers of alphabeta thymocytes similar to those found in mice solely transgenic for a rearranged TCRbeta chain gene. gammadelta T cells from the triple transgenic mice express the transgenic TCRbeta chain, but do not express a TCRalpha chain, and, by a number of phenotypic and molecular parameters, appear to be bona fide gammadelta thymocytes. Our results reveal a remarkable degree of independence in the generation of alphabeta and gammadelta lineage cells from progenitor cells that, in theory, could simultaneously express a TCRgammadelta and a pre-TCR.  相似文献   

20.
In thymocyte ontogeny, Tcr-a genes rearrange after Tcr-b genes. TCR alpha beta transgenic (Tg) mice have no such delay, consequently expressing rearranged TCR alpha beta proteins early in the ontogeny. Such mice exhibit reduced thymic cellularity and accumulate mature, nonprecursor TCR(+)CD8(-)4(-) thymocytes, believed to be caused by premature Tg TCR alpha beta expression via unknown mechanism(s). Here, we show that premature expression of TCR alpha beta on early thymocytes curtails thymocyte expansion and impairs the CD8(-)4(-) --> CD8(+)4(+) transition. This effect is accomplished by two distinct mechanisms. First, the early formation of TCR alpha beta appears to impair the formation and function of pre-TCR, consistent with recently published results. Second, the premature TCR alpha beta contact with intrathymic MHC molecules further pronounces the block in proliferation and differentiation. These results suggest that the benefit of asynchronous Tcr-a and Tcr-b rearrangement is not only to minimize waste during thymopoiesis, but also to simultaneously allow proper expression/function of the pre-TCR and to shield CD8(-)4(-) thymocytes from TCR alpha beta signals that impair thymocyte proliferation and CD8(-)4(-) --> CD8(+)4(+) transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号