首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The binding of sugars to a polymer support as thiosemicarbazones has been investigated as a means of immobilizing glycans. Hydrazones of glucose andN-acetylglucosamine were prepared by reaction with hydrazine hydrate, and successfully reacted with isothiocyanate-substituted polystyrene by incubation at room temperature and neutral pH. The binding was efficient and stable in aqueous buffers over a range of pH conditions. The bound sugars were recovered in moderate yield by treatment of the beads with hydrazine hydrate, benzaldehyde or acetone. Direct binding of reducing sugars to thiosemicarbazide-substituted polystyrene was not successful because of the unfavourable thermodynamics.  相似文献   

2.
The protease-catalyzed transesterifications between hexoses and divinyladipate were examined. In dimethylformamide hexoses such as d-glucose, d-mannose, d-galactose and -methyl d-galactoside were esterified with divinyladipate by alkaline protease from Streptomyces sp. to give corresponding 6-O-vinyl adipoyl sugars. When the denaturing cosolvent, DMSO, was added to the solvent, galactose was selectively esterified at only the C-2 position.  相似文献   

3.
Reducing sugars react in aqueous ammonia to form several imidazolic compounds. An unknown compound was newly isolated from the reaction mixture of l-rhamnose and ammonia, and identified as 4(5)-ethylimidazole. It was found that this compound was formed in aqueous ammonia only from such reducing sugars as rhamnose, fucose etc. containing a terminal methyl group. Consequently, it was inferred that in aqueous ammonia l-rhamnose decomposes to form ethylglyoxal as an intermediate of 4(5)- ethylimidazole.  相似文献   

4.
Summary Pig intestinal brush borders (BB) were radiolabeled by iodination using the lactoperoxidase-hydrogen peroxide procedure. The BB were then detergent solubilized, centrifuged to remove particulate material, and chromatographed on Sepharose CL-4B. The fractions were incubated with K88+ E. coli using an in vitro binding assay. Binding of the iodinated membranes to K88+ E. coli occurred throughout a wide range of molecular weight components, in excess of 690K daltons to near 25K daltons. The system utilizing intact K88+ E. coli and solubilized BB was shown to be saturable. Prior contact of K88+ E. coli with nonradiolabeled membranes or specific antibodies to K88+ pili inhibited binding of the radiolabeled BB. Simple sugars were tested for their ability to block binding of the labeled BB; partial inhibition occurred with galactose (17.9%), galactosamine (32%), glucose (10.6%), and N-acetylglucosamine (32%). Calcium enhanced binding with as little as 10 M. A 10 × increase in binding occurred with 500 M calcium. Affinity chromatography using K88+ pili coupled on agarose beads avidly bound the labeled BB. The receptor membranes were eluted with high molar concentrations of salt, however considerable degradation occurred. Despite low yields from the affinity system, receptor membranes with higher binding activities were recovered. Protein: glycoprotein ratios were 1:4. Elution with SDS and electrophoresis on 12.5% polyacrylamide gels in the presence of a reducing agent produced two major subunits 35–32K and 23K daltons. These components were recovered from the gels and retained their binding activity. This information suggests that the intestinal receptor responsible for binding of K88+ E. coli is a glycoprotein, that in the native state exists in multimeric forms.  相似文献   

5.
Summary Lipid bilayer experiments were performed with the sugar-specific LamB (maltoporin) channel ofEscherichia coli outer membrane. Single-channel analysis of the conductance steps caused by LamB showed that there was a linear relationship between the salt concentration in the aqueous phase and the channel conductance, indicating only small or no binding between the ions and the channel interior. The total or the partial blockage of the ion movement through the LamB channel was not dependent on the ion concentration in the aqueous phase. Both results allowed the investigation of the sugar binding in more detail, and the stability constants of the binding of a large variety of sugars to the binding site inside the channel were calculated from titration experiments of the membrane conductance with the sugars. The channel was highly cation selective, both in the presence and absence of sugars, which may be explained by the existence of carbonyl groups inside the channel. These carbonyl groups may also be involved in the sugar binding via hydrogen bonds. The kinetics of the sugar transport through the LamB channel were estimated relative to maltose by assuming a simple one-site, two-barrier model from the relative rates of permeation taken from M. Luckey and H. Nikaido (Proc. Natl. Acad. Sci. USA 77:165–171 (1980a)) and the stability constants for the sugar binding given in this study.  相似文献   

6.
Estradiol-displayed bioaffinity beads binding to the anti-estradiol antibody attached via the protein A-coated mica surface were examined by atomic force microscopy (AFM). The amount of specifically bound beads on the surface was directly proportional to the concentration of free estradiol in solution. Estradiol from 10 ng ml–1 to 10 g ml–1 could be determined. This suggested that direct counting of bioaffnity beads by AFM can be used to detect specific ligand for the target protein.  相似文献   

7.
8.
Molecular dynamics simulations have been conducted of the helical polypeptide melittin, in concentrated aqueous solutions of the alpha and beta anomers of D-glucopyranose. Glucose is an osmolyte, and it is expected to be preferentially excluded from the surfaces of proteins. This was indeed found to be the case in the simulations. The results indicate that the observed exclusion may have a contribution from an under-representation of hydrogen bonding interactions between glucose groups and exposed side chains, compared to water. However, glucose was found to bind quite specifically to melittin by stacking its hydrophobic face, consisting of aliphatic protons, against the flat hydrophobic face of the indole group of the tryptophan-19 side chain. Although the binding site for this interaction is localized, the binding is weak for both anomers, with a binding free energy estimated as only ~0.5 kcal/mol (i.e. near k(B)T). The face of the sugar stacked against the Trp indole ring is different for the two anomers of glucose, due to the disruption of the H1-H3-H5 hydrophobic triad of the beta anomer by the axial C1 hydroxyl group in the alpha anomer. The measurable affinity of the sugar for the Trp side chain is consistent with the very frequent occurrence of this group in the binding sites of proteins that complex with sugars.  相似文献   

9.
It is a common observation that gliding bacteria form raised, smooth-edged colonies on nutrient-rich media, and typical thin, spreading, uneven-edged colonies on nutrient-poor media. An earlier study of the effect of different sugars on colony spreading by Cytophaga johnsonae was expanded to include the effects of several sugars and other organic compounds on the motility of groups of cells (rafts), and latex bead movement on cells' surfaces. When the structures of those sugars that did, or did not, affect raft formation and colony spreading were compared, it was noted that those sugars that inhibited these two manifestations of gliding motility all possessed a common sub-structure, that found in the portion of glucopyranose comprising carbons 3, 4, 5, and 6. If these structural features were altered chemically or stereochemically, the resulting molecule had little to no effect on motility. The differential effects of some compounds on raft formation, colony spreading, and bead movement are noted. A regulatory mechanism that would turn off motility in the presence of an inhibitory sugar is implicated, and the relevance of such a system to the life of the organism is discussed. We report, as well, additional compounds that will serve as carbon and energy sources for C. johnsonae.  相似文献   

10.
Mono- and disaccharides were covalently and irreversibly bound to aminopolystyrene beads in good yield by heating in dilute aqueous solution. The degree and stability of sugar binding were determined by chemical and radiochemical methods and the accessibility of the bound sugars was demonstrated by exoglycosidase hydrolysis and by an enzyme-linked lectin-binding assay using Concanavalin A.  相似文献   

11.
A simple procedure is described for the elimination ofO-linked glycans from bovine submaxillary mucin under non-reducing conditions, using triethylamine in aqueous hydrazine. The glycans were isolated as the hydrazones, which were converted to the reducing glycans by exchange with acetone in neutral aqueous solution. The glycan alditols obtained after reduction corresponded to those obtained by the reductive -elimination ofO-glycans.  相似文献   

12.
The molecular mechanisms that initiate and control the metabolic activities of seed germination are largely unknown. Sugars may play important roles in regulating such metabolic activities in addition to providing an essential carbon source for the growth of young seedlings and maintaining turgor pressure for the expansion of tissues during germination. To test this hypothesis, we investigated the physiological role of sugars in the regulation of -amylase gene expression and carbohydrate metabolism in embryo and endosperm of germinating rice seeds. RNA gel blot analysis revealed that in the embryo and aleurone cells, expression of four -amylase genes was differentially regulated by sugars via mechanisms beyond the well-known hormonal control mechanism. In the aleurone cells, expression of these -amylase genes was regulated by gibberellins produced in the embryo and by osmotically active sugars. In the embryo, expression of two -amylase genes and production of gibberellins were transient, and were probably induced by depletion of sugars in the embryo upon imbibition, and suppressed by sugars influx from the endosperm as germination proceeded. The differential expression of the four -amylase genes in the embryo and aleurone cells was probably due to their markedly different sensitivities to changes in tissue sugar levels. Our study supports a model in which sugars regulate the expression of -amylase genes in a tissue-specific manner: via a feedback control mechanism in the embryo and via an osmotic control mechanism in the aleurone cells. An interactive loop among sugars, gibberellins, and -amylase genes in the germinating cereal grain is proposed.  相似文献   

13.
Summary Nearly all of the filter paper, endoglucanase and -glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50°C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50–60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.  相似文献   

14.
Summary To study the role of phagocytosis in periodontal tissues, internalization of fibronectin-coated latex beads by Gin-1 fibroblast populations was investigated. Demonstration of phagocytosis by internalization of beads was confirmed by immunofluorescence microscopy, electron microscopy, and flow-cytometry. The percent of cells phagocytosing beads measured by flow-cytometry was negligible at 4° and 23°C, but increased to approximately 17% at 37°C. As measured by automated image analysis, the percentage of phagocytosing cells increased linearly from 8 to 22 with increasing fibronectin concentration of the incubation solution from 30 ng to 300 g/ml. Similar linear increases in the percentage of phagocytosing cells were observed when beads were incubated with cells for periods ranging from 2 h to 2 days. To examine the role of the Arg-Gly-Asp receptor in mediating phagocytosis, fibronectin-coated beads were first coated with either Gly-Arg-Gly-Asp-Ser-Pro or Gly-Arg-Gly-Glu-Ser-Pro peptides at concentrations of 0.125, 0.5, and 1 mg/ml, or with control vehicle, and then incubated with cells. Phagocytosis was completely blocked at 1 mg/ml of the Gly-Arg-Gly-Asp-Ser-Pro peptide, but the Gly-Arg-Gly-Glu-Ser-Pro peptide showed no significant inhibition compared to control values. Blocking antibodies to the cell attachment domain of the fibronectin molecule also reduced the percentage of phagocytosing cells significantly. The data show that these phagocytic assays are sensitive enough to detect the influence of incubation temperature and time, cellular heterogeneity, ligand type, and ligand concentration on the percentage of phagocytosing cells. Further, the mechanisms which determine internalization of fibronectin-coated beads rely in part on the initial binding of ligand to the Arg-Gly-Asp receptor present on fibroblasts.  相似文献   

15.

Objectives

Attachment of magnetic particles to cells is needed for a variety of applications but is not always possible or efficient. Simpler and more convenient methods are thus desirable. In this study, we tested the hypothesis that endothelial cells (EC) can be loaded with micron-size magnetic beads by the phagocytosis-like mechanism ‘angiophagy’. To this end, human umbilical vein EC (HUVEC) were incubated with magnetic beads conjugated or not (control) with an anti-VEGF receptor 2 antibody, either in suspension, or in culture followed by re-suspension using trypsinization.

Results

In all conditions tested, HUVEC incubation with beads induced their uptake by angiophagy, which was confirmed by (i) increased cell granularity assessed by flow cytometry, and (ii) the presence of an F-actin rich layer around many of the intracellular beads, visualized by confocal microscopy. For confluent cultures, the average number of beads per cell was 4.4 and 4.2, with and without the presence of the anti-VEGFR2 antibody, respectively. However, while the actively dividing cells took up 2.9 unconjugated beads on average, this number increased to 5.2 if binding was mediated by the antibody. Magnetic pulldown increased the cell density of beads-loaded cells in porous electrospun poly-capro-lactone scaffolds by a factor of 4.5 after 5 min, as compared to gravitational settling (p?<?0.0001).

Conclusion

We demonstrated that EC can be readily loaded by angiophagy with micron-sized beads while attached in monolayer culture, then dispersed in single-cell suspensions for pulldown in porous scaffolds and for other applications.
  相似文献   

16.
On-line detection of substances with an alcoholic or phenolic hydroxyl group using imidazole and peroxyoxalate chemiluminescence was investigated qualitatively using a flow-injection method. The substances tested included six polyphenols, five monophenols and six sugars. After incubation at 80°C with an imidazole buffer (pH 9.5) the substances were detected by peroxyoxalate chemiluminescence. The polyphenols tested (e.g., pyrogallol, purpurogallin, and dopamine) showed the strongest light emission. The sugars with hydroxyl groups (e.g., fructose and lactose) and the monophenols (e.g., phenol, serotonin, and β-estradiol) produced only a weak light emission. Reaction of hydroxyl compounds and imidazole generated hydrogen peroxide. Imidazole served two roles, it catalysed the reaction with the hydroxyl compound and initiated peroxyoxalate chemiluminescence on-line. A novel reactor formed by packing glass beads into a flow cell (Teflon) of a chemiluminometer improved the sensitivity of light detection.  相似文献   

17.
The binding between marcrophage-like cells J774G8 and Leishmania braziliensis (NR) promastigotes was studied in vitro by a radioisotopic assay under various conditions in the absence of serum. Different sugars, N-acetyl-D-glucosamine, D-glucose, D-mannose, D-galactose, and chitin, diminished the binding of the parasite, whereas other sugars, D-arabinose, D-fucose and D-xylose, did not affect the binding. The presence of a lectin-like ligand specific for N-acetyl-D-glucosamine has been detected on the cell surface of the Leishmania braziliensis (NR) by fluorescence microscopy.These data suggest that the binding of the parasite to the host's cell is a ligand-receptor interaction which involves the participation of a lectin-like component on the parasite cell surface.  相似文献   

18.
The re-uptake of sugars driven by the proton gradient was studied in sugar net-release and net-uptake experiments using roots of intact maize (Zea mays cv. Blizzard) and field bean (Vicia faba L. cv. Alfred) plants. The net release of sugars into the root medium (0.1 mM CaSO4) was stimulated by: the protonophore CCCP (10 M); the sulfhydryl reagent NEM (300 M); the specific inhibitor of plasmalemma ATPase vanadate (0.5 mM); and the inhibitor of the glucose carrier phlorizin (2 mM). Net uptake of glucose, fructose and arabinose from 10 M external concentrations was also inhibited by these substances. Surprisingly fusicoccin, a stimulator of net proton release did not effect net sugar uptake. Medium pH values only influenced sugar net uptake if the pH was above 7. It is concluded that a degradation of the proton gradient across the plasmalemma stimulates net sugar release because of disturbed re-uptake of sugars (in particular glucose) via a proton/sugar cotransport system. Thus, the retention of sugars by root cells not only depends on the plasmalemma permeability but also on the electro-chemical proton gradient. If an electro-chemical proton gradient is established by plasmalemma ATPase activity the re-uptake of sugars by proton/sugar cotransport minimizes the release of sugars into the rhizosphere.  相似文献   

19.
We have developed and optimized a single-batch process for the production of ethanol from wheat straw employing the fungusTrichoderma viride and the yeastPachysolen tannophylus. T. viride andAspergillus niger were examined for their ability to produce fermentable sugars from cellulosic waste materials, e.g. different kinds of straw and wood waste.T. viride most efficiently saccharified delignified wheat straw within 3 days at 25–30°C with a yield of reducing sugars of 27 g from 50 g delignified wheat straw. The resulting wheat straw hydrolysates contained xylose and glucose in a 1:1.6 molar ratio. After heat inactivation of fungal activities the sugars were converted to ethanol by the oxygen-tolerant yeastP. tannophylus in the same batch. Under the optimized conditions developed (all weights are per liter) 70 g natural untreated wheat straw (100%) yielded 50 g delignified straw (71.4%), which was saccharified to 27 g reducing sugars (38.6%). Fermentation of the sugars yielded 11.8 g ethanol (16.9%) and followed the molar equation: 1 xylose + 1.6 glucose 5.3 ethanol + 5.6 CO2.  相似文献   

20.
Bioengineered bacterial polyester inclusions have the potential to be used as a vaccine delivery system. The biopolyester beads were engineered to display a fusion protein of the polyester synthase PhaC and the two key antigens involved in immune response to the infectious agent that causes tuberculosis, Mycobacterium tuberculosis, notably antigen 85A (Ag85A) and the 6-kDa early secreted antigenic target (ESAT-6) from Mycobacterium tuberculosis. Polyester beads displaying the respective fusion protein at a high density were successfully produced (henceforth called Ag85A-ESAT-6 beads) by recombinant Escherichia coli. The ability of the Ag85A-ESAT-6 beads to enhance mouse immunity to the displayed antigens was investigated. The beads were not toxic to the animals, as determined by weight gain and absence of lesions at the inoculation site in immunized animals. In vivo injection of the Ag85A-ESAT-6 beads in mice induced significant humoral and cell-mediated immune responses to both Ag85A and ESAT-6. Vaccination with Ag85A-ESAT-6 beads was efficient at stimulating immunity on their own, and this ability was enhanced by administration of the beads in an oil-in-water emulsion. In addition, vaccination with the Ag85A-ESAT-6 beads induced significantly stronger humoral and cell-mediated immune responses than vaccination with an equivalent dose of the fusion protein Ag85A-ESAT-6 alone. The immune response induced by the beads was of a mixed Th1/Th2 nature, as assessed from the induction of the cytokine gamma interferon (Th1 immune response) and increased levels of immunoglobulin G1 (Th2 immune response). Hence, engineered biopolyester beads displaying foreign antigens represent a new class of versatile, safe, and biocompatible vaccines.Bioengineered nano-/microstructures manufactured by microorganisms are becoming increasingly attractive because of their functional properties suitable for applications in various fields, particularly the medical sciences (9, 25, 29). Biopolyester beads comprising polyhydroxyalkanoate (PHA) are produced as intracellular inclusions by a wide range of bacteria and archaea when a carbon source is available in excess (30). PHA synthesis requires the key enzyme, polyester synthase, to catalyze the stereoselective polymerization of (R)-3-hydroxyacyl-coenzyme A to PHA. Self-assembly of polyester chains results in the formation of polymer granules with a hydrophobic core, and the PHA synthase protein remains covalently attached at the surface (28). These spherical granules range in size from 50 to 300 nm and accumulate in the intracellular space (34).Such biopolyester beads can be engineered to display the PHA synthase protein and its fusion partners on the surface at a high density (24). There have been recent examples where biopolyester beads were specifically engineered, produced in bacteria, and then harvested for their potential applications as life science tools. For example, biopolyester beads have been produced which display the immunoglobulin G (IgG) binding domain ZZ from protein A (6) for use as an alternative to protein A latex beads for a variety of diagnostic tests. Another study produced beads which displayed green fluorescent protein to enable tracking following in vivo administration (23). Beads have been developed with covalently attached enzymes, suggesting an application in immobilization and stabilization of biocatalysts (22). Recently, biopolyester beads have been produced which display immobilized antibody single-chain fragments as well as multiple binding functions, including the binding of inorganic compounds (4, 11, 14).Our interest in these biopolyester beads is to explore their properties for use as vaccine delivery agents. Potential advantages associated with using these beads as vaccine delivery agents include their size, versatility, and inherent biocompatibility with living tissues. Particles smaller than 2 μm in size are readily phagocytosed by macrophages and dendritic cells (20), suggesting the value of using nano-/microsized particles as vaccine delivery systems. The concept of using nano-/microparticles for delivering vaccines has already been explored; for example, biodegradable biocompatible polyesters polylactide and poly-d,l-lactide-co-glycolic acid have been used as vaccine delivery systems (31) or carriers of adjuvant systems (15). Employing PHA beads for delivery of vaccines may present additional advantages, such as low cost, ease of production, and mode of surface functionalization. Novel vaccines are required for a variety of infectious diseases, including tuberculosis, for which no truly efficacious vaccine has yet been designed (16). A number of antigens have been considered for developing new tuberculosis vaccines (3, 19, 33). Early secreted antigenic target 6-kDa protein (ESAT-6) is found in Mycobacterium bovis and Mycobacterium tuberculosis but not in the vaccine strain Mycobacterium bovis BCG (12). This antigen is recognized immunologically in tuberculosis-infected humans (27), cattle (26), and mice (5). The Ag85 complex is composed of three homologous proteins, Ag85A, Ag85B, and Ag85C (1). Ag85A has been used in a number of immunization studies and has been shown to elicit an immune response and, in some cases, enhanced protection (10, 13).This paper describes the development and microbial production of bioengineered biopolyester beads displaying on their surfaces a functional antigen comprising a fusion protein of polyester synthase, Ag85A, and ESAT-6 and subsequent evaluation of antigen-specific immune responses in immunized mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号