首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Schizosaccharomyces pombe contains a single gene, ras1, which is a homolog of the mammalian RAS genes. ras1 is required for conjugation, sporulation, and normal cell shape. ras1 has been previously identified as ste5. We report here a gene we call byr2 that can encode a predicted protein kinase and can partially suppress defects in ras1 mutants. ras1 mutant strains expressing high levels of byr2 can sporulate competently but are still defective in conjugation and abnormally round. byr2 mutants are viable and have normal shape but are absolutely defective in conjugation and sporulation. byr2 is probably identical to ste8. In many respects, byr2 resembles the byr1 gene, another suppressor of the ras1 mutation, which has been identified previously as ste1. Our data indicate that if ras1, byr2, and byr1 act along the same pathway, then the site of action for byr2 is between the sites for ras1 and byr1.  相似文献   

2.
Stm1, a G-protein coupled receptor, which senses nutritional state drives cells to stop the proliferative cell cycle and enter meiosis under nutritionally deficient conditions in Schizosaccharomyces pombe. It was shown that overexpression of Stm1 led growth inhibition and uncontrolled mitotic haploidization presumably by the premature initiation of mitosis. Sty1 and Gpa2 seem to play important roles for Stm1 to deliver starvation signal to induce downstream function. Based on the observation that conversion of diploid to haploid by overexpression of Stm1 can be easily detected as pink or red colonies in the media containing low adenine, HTS drug screening system to identify modulators of GPCR was established and tested using 413 compounds. Four very potent modulators of GPCR including Biochanin A, which possess strong inhibitory activity against uncontrolled cell division, were identified in this screening. This study provides the yeast-based platform that allows robust cellular assays to identify novel modulators of G-protein signaling and MAP kinase pathway.  相似文献   

3.
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi-copy suppressor of glucose-induced loss of heat resistance in stationary phase cells. The N-terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose-induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP-dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE-controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose-induced cAMP signalling through direct GTPase activation of the Gs-alpha protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS-G-alpha protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non-overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.  相似文献   

4.
5.
6.
7.
The signaling molecule cyclic AMP (cAMP) is a ubiquitous second messenger that enables cells to detect and respond to extracellular signals. cAMP is generated by the enzyme adenylyl cyclase, which is activated or inhibited by the Gα subunits of heterotrimeric G proteins in response to ligand-activated G-protein-coupled receptors. Here we identified the unique gene (CAC1) encoding adenylyl cyclase in the opportunistic fungal pathogen Cryptococcus neoformans. The CAC1 gene was disrupted by transformation and homologous recombination. In stark contrast to the situation for Saccharomyces cerevisiae, in which adenylyl cyclase is essential, C. neoformans cac1 mutant strains were viable and had no vegetative growth defect. Furthermore, cac1 mutants maintained the yeast-like morphology of wild-type cells, in contrast to the constitutively filamentous phenotype found upon the loss of adenylyl cyclase in another basidiomycete pathogen, Ustilago maydis. Like C. neoformans mutants lacking the Gα protein Gpa1, cac1 mutants were mating defective and failed to produce two inducible virulence factors: capsule and melanin. As a consequence, cac1 mutant strains were avirulent in animal models of cryptococcal meningitis. Reintroduction of the wild-type CAC1 gene or the addition of exogenous cAMP suppressed cac1 mutant phenotypes. Moreover, the overexpression of adenylyl cyclase restored mating and virulence factor production in gpa1 mutant strains. Physiological studies revealed that the Gα protein Gpa1 and adenylyl cyclase controlled cAMP production in response to glucose, and no cAMP was detectable in extracts from cac1 or gpa1 mutant strains. These findings provide direct evidence that Gpa1 and adenylyl cyclase function in a conserved signal transduction pathway controlling cAMP production, hyphal differentiation, and virulence of this human fungal pathogen.  相似文献   

8.
9.
In the phytopathogenic fungus Ustilago maydis, fusion of haploid cells is a prerequisite for infection. This process is controlled by a pheromone-receptor system. The receptors belong to the seven-transmembrane class that are coupled to heterotrimeric G proteins. Of four Galpha subunits in U. maydis, only gpa3 has a function during mating and cyclic AMP (cAMP) signaling. Activation of the cAMP cascade induces pheromone gene expression; however, it does not lead to the induction of conjugation tubes seen after pheromone stimulation. To investigate the possibility that a Gbeta subunit participates in pheromone signaling, we isolated the single beta subunit gene, bpp1, from U. maydis. bpp1 deletion mutants grew filamentously and showed attenuated pheromone gene expression, phenotypes associated with deltagpa3 strains. In addition, a constitutively active allele of gpa3 suppressed the phenotype of the bpp1 deletion strains. We suggest that Bpp1 and Gpa3 are components of the same heterotrimeric G protein acting on adenylyl cyclase. Interestingly, while deltagpa3 strains are impaired in pathogenicity, deltabpp1 mutants are able to induce plant tumors. This could indicate that Gpa3 operates independently of Bpp1 during pathogenic development.  相似文献   

10.
Using the cloned Saccharomyces cerevisiae YPT1 gene as hybridization probe, a gene, designated ypt2, was isolated from the fission yeast Schizosaccharomyces pombe and found to encode a 200 amino acid long protein most closely related to the ypt branch of the ras superfamily. Disruption of the ypt2 gene is lethal. The bacterially produced ypt2 gene product is shown to bind GTP. A region of the ypt2 protein corresponding to but different from the 'effector region' of ras proteins is also different from that of ypt1 proteins of different species but identical to the 'effector loop' of the S.cerevisiae SEC4 gene product, a protein known to be required for vesicular protein transport. The S.pombe ypt2 gene under control of the S.cerevisiae GAL10 promoter is able to suppress the temperature-sensitive phenotype of a S. cerevisiae sec4 mutant, indicating a functional similarity of these GTP-binding proteins from the two very distantly related yeasts.  相似文献   

11.
One major class of G proteins typically functions as heterotrimeric complexes consisting of Galpha, Gbeta and Ggamma subunits. However, recent work in yeast has identified an atypical Galpha protein, Gpa2p, which functions without cognate Gbetagamma subunits. Two novel kelch repeat protein binding partners of Gpa2p, Krh1p and Krh2p, do not function as alternative Gbeta subunits, as initially thought, but rather as Gpa2p effectors. They directly link Gpa2p to protein kinase A, thus forming an adenylate cyclase bypass pathway that enables inputs other than cellular cAMP concentration to affect protein kinase A activity. Because mammalian protein kinase A expressed in yeast is also subject to control by the same bypass pathway, it is exciting to postulate that a functionally similar mechanism might exist in mammalian cells, and that other Galpha proteins could exhibit similar characteristics to Gpa2p.  相似文献   

12.
13.
14.
In order to identify amino acid residues of Ste4p involved in receptor recognition and/or receptor-G protein coupling, we employed random in vitro mutagenesis and a genetic screening to isolate mutant Ste4p subunits with altered pheromone response. We generated a plasmid library containing randomly mutagenized Ste4 ORFs, followed by phenotypic selection of ste4p mutants by altered alpha pheromone response in yeast cells. Subsequently, we analyzed mutant ste4-10 which has a replacement of the almost universally conserved leucine 132 by phenylalanine. This residue lies in the first blade of the beta propeller structure proposed by crystallographic analysis. By overexpression experiments we found that mutant ste4p subunit triggers the mating pathway at wild type levels in both wild type and receptorless strains. When expressed in a ste4 background, however, the mutant G protein is activated inefficiently by mating pheromone in both a and alpha cells. The mutant ste4-10p was tested in the two-hybrid system and found to be defective in its interaction with the Gpa1p, but has a normal association with the C-termini end of the Ste2p receptor. These observations strongly suggest that the Leu-132 of the Ste4p subunit is essential for efficient activation of the G protein by the pheromone-stimulated receptor and that this domain could be an important point for physical interaction between the Gbeta and the Galpha subunits.  相似文献   

15.
Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.  相似文献   

16.
Saccharomyces cerevisiae Gpa2p, the alpha subunit of a heterotrimeric guanine nucleotide-binding protein (G protein), is involved in the regulation of vegetative growth and pseudohyphal development. Here we report that Gpa2p also controls sporulation by interacting with the regulatory domain of Ime2p (Sme1p), a protein kinase essential for entrance of meiosis and sporulation. Protein-protein interactions between Gpa2p and Ime2p depend on the GTP-bound state of Gpa2p and correlate with down-regulation of Ime2p kinase activity in vitro. Overexpression of Ime2p inhibits pseudohyphal development and enables diploid cells to sporulate even in the presence of glucose or nitrogen. In contrast, overexpression of Gpa2p in cells simultaneously overproducing Ime2p results in a drastic reduction of sporulation efficiency, demonstrating an inhibitory effect of Gpa2p on Ime2p function. Furthermore, deletion of GPA2 accelerates sporulation on low-nitrogen medium. These observations are consistent with the following model. In glucose-containing medium, diploid cells do not sporulate because Ime2p is inactive or expressed at low levels. Upon starvation, expression of Gpa2p and Ime2p is induced but sporulation is prevented as long as nitrogen is present in the medium. The negative control of Ime2p kinase activity is exerted at least in part through the activated form of Gpa2p and is released as soon as nutrients are exhausted. This model attributes a switch function to Gpa2p in the meiosis-pseudohyphal growth decision.  相似文献   

17.
All eukaryotic cells sense extracellular stimuli and activate intracellular signaling cascades via G protein-coupled receptors (GPCR) and associated heterotrimeric G proteins. The Saccharomyces cerevisiae GPCR Gpr1 and associated Galpha subunit Gpa2 sense extracellular carbon sources (including glucose) to govern filamentous growth. In contrast to conventional Galpha subunits, Gpa2 forms an atypical G protein complex with the kelch repeat Gbeta mimic proteins Gpb1 and Gpb2. Gpb1/2 negatively regulate cAMP signaling by inhibiting Gpa2 and an as yet unidentified target. Here we show that Gpa2 requires lipid modifications of its N-terminus for membrane localization but association with the Gpr1 receptor or Gpb1/2 subunits is dispensable for membrane targeting. Instead, Gpa2 promotes membrane localization of its associated Gbeta mimic subunit Gpb2. We also show that the Gpa2 N-terminus binds both to Gpb2 and to the C-terminal tail of the Gpr1 receptor and that Gpb1/2 binding interferes with Gpr1 receptor coupling to Gpa2. Our studies invoke novel mechanisms involving GPCR-G protein modules that may be conserved in multicellular eukaryotes.  相似文献   

18.
Canonical G proteins are heterotrimeric, consisting of alpha, beta, and gamma subunits. Despite multiple Galpha subunits functioning in fungi, only a single Gbeta subunit per species has been identified, suggesting that non-conventional G protein signaling exists in this diverse group of eukaryotic organisms. Using the Galpha subunit Gpa1 that functions in cAMP signaling as bait in a two-hybrid screen, we have identified a novel Gbeta-like/RACK1 protein homolog, Gib2, from the human pathogenic fungus Cryptococcus neoformans. Gib2 contains a seven WD-40 repeat motif and is predicted to form a seven-bladed beta propeller structure characteristic of beta transducins. Gib2 is also shown to interact, respectively, with two Ggamma subunit homologs, Gpg1 and Gpg2, similar to the conventional Gbeta subunit Gpb1. In contrast to Gpb1 whose overexpression promotes mating response, overproduction of Gib2 suppresses defects of gpa1 mutation in both melanization and capsule formation, the phenotypes regulated by cAMP signaling and associated with virulence. Furthermore, depletion of Gib2 by antisense suppression results in a severe growth defect, suggesting that Gib2 is essential. Finally, Gib2 is shown to also physically interact with a downstream target of Gpa1-cAMP signaling, Smg1, and the protein kinase C homolog Pkc1, indicating that Gib2 is also a multifunctional RACK1-like protein.  相似文献   

19.
Multiple regulatory domains on the Byr2 protein kinase.   总被引:9,自引:3,他引:6       下载免费PDF全文
Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2.  相似文献   

20.
R Coppolecchia  P Buser  A Stotz    P Linder 《The EMBO journal》1993,12(10):4005-4011
We have isolated a gene, STM1, which encodes a new translation initiation factor from Saccharomyces cerevisiae. The gene acts, if present on a multicopy plasmid, as a suppressor of a temperature-sensitive mutation in eIF-4A. The single copy STM1 gene is not essential, but disruption causes a slow growth phenotype. Analysis of polysomes from a strain carrying a disrupted stm1 allele shows a clear defect in translation initiation as shown by a strong reduction in polysomes and an increase in the monosomes. Sequence analysis revealed interesting features of the putative Stm1 protein. Comparison of the entire protein sequence with databanks showed some similarity with the human eIF-4B protein. The Stm1 protein has potential RNP1 and RNP2 motifs characteristic for RNA-binding proteins. The protein also contains six highly conserved direct repeats of 21-26 amino acids and one partial repeat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号