首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological function ofLentinula edodes in a myco-heterotrophic orchid,Erythrorchis ochobiensis was examined, using one local variant each from Japan (JPN), Papua New Guinea (PNG) and New Zealand (NZ). All variants induced seed germination: PNG and NZ isolates were effective at 25°C and JPN isolate showed the highest germination rate at 30°C. Germinated seeds developed into plants and formed normal endomycorrhizas. Hence, it is concluded thatL. edodes has a perfect symbiotic potential withE. ochobiensis, though it has not been observed in the root of the orchid in the field.  相似文献   

2.
Seven isolates of orchid-associated bacteria (OAB) belonging to five species were tested for their effect on mycorrhiza-assisted germination of the terrestrial orchid Pterostylis vittata. Hormone standards were also tested to evaluate their potential roles in the germination and development of the orchid. Strains of Pseudomonas putida, Xanthomonas maltophilia and Bacillus cereus promoted symbiotic germination, whereas certain strains of P. putida and an Arthrobacter species reduced it. Symbiotic germination was enhanced by IAA, inhibited by gibberellic acid and suppressed by kinetin. Each species of OAB produced IAA, although the conditions of growth affected the production of the auxin. IAA was not produced by the mycorrhizal fungus from P. vittata under the test conditions. Enhancement of symbiotic germination development may have resulted either from the production of IAA by the OAB and/or by the induction of endogenous hormones in the orchid by the metabolites of the bacteria and/or mycorrhizal fungus.  相似文献   

3.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

4.
Summary The effect of 3-indoleacetic acid (IAA), 6-furfurylaminopurine (kinetin), and gibberellic acid (GA3) on germination of the orchid Comparettia falcata was evaluated in a factorial experiment (4×4×4) with Murashige and Skoog (1962) basal medium. It was established that seeds of this orchid could be maintained under aseptic conditions as long as the necessary nutrients and appropriate concentrations of growth regulators were provided. Of the three growth regulators used, IAA significantly decreased seed germination of Comparettia falcata. There was a synergistic effect in the kinetin:GA3 combination that produced a positive response in both percentage seed germination and development of seedlings. This study describes a single medium-based protocol able to achieve more than 160000 seedlings within 21 wk, starting from a single capsule, sufficient for both large-scale propagation and in vitro conservation of this threatened orchid.  相似文献   

5.
Hidetaka Umata 《Mycoscience》1997,38(3):335-339
To test the mycorrhizal function of heterobasidiomycetous fungi on achlorophyllous orchids and to examine the symbiotic fungal range of a myco-heterotrophic orchid,Erythrorchis ochobiensis, synthetic cultures of the orchid seed were carried out withAuricularia polytricha isolates from Japan and Mexico. After three and a half mo of incubation, 57.0–70.7% of seeds germinated but none of them showed further growth. When cultured on peat moss at 25°C, the germination rate was 8.7% in the presence of Mexican isolate and 18.0% in the presence of Japanese isolate. Some germinated seeds developed into protocorms, and several seeds incubated with the Mexican isolate developed into plantlets after 5 mo. Pelotons were observed in the cells of protocorms and roots. The results indicated that some heterobasidiomycetous fungi could form endomycorrhizas with a myco-heterotrophic orchid. The results also showed that the symbiont ofE. ochobiensis extends, at least experimentally, to Heterobasidiomycetes. The variances of germination rate and seedling growth were suggested to be affected by the difference of isolates and culture conditions.  相似文献   

6.
Hidetaka Umata 《Mycoscience》1997,38(3):355-357
In vitro germination of a myco-heterotrophic orchid,Erythrorchis ochobiensis, was tested in the presence of ectomycorrhizal fungi,Lyophyllum shimeji andTricholoma fulvocastaneum. Lyophyllum shimeji stimulated the germination after incubation for 1.5 mo. Although most germinated seeds did not grow further after 3 mo, several seeds developed into small protocorms but showed amorphous profiles. Fungal mycelia were observed in the germinated seeds and protocorms, but pelotons were not detected. Since the seeds did not germinate axenically, it may be suggested that the fungus has the ability to stimulate germination.  相似文献   

7.
Summary An efficient seed germination system was developed for an endemic and endangered orchid of the prairies of Bogotá, Colombia. The effects of three culture media [Murashige and Skoog (MS) salts (1962); Knudson C (KC) salts (1946); and Hydro-Coljap? salts], activated charcoal [0 and 0.5% (w/v)], α-naphthaleneacetic acid (NAA; 0.0, 2.68 and 5.37 μM), and four light regimes (white light, darkness, red light, and far-red light) on asymbiotic germination of Odontoglossum gloriosum, were studied. The best germination percentage and germination time was obtained on agar-solidified medium supplemented with Hydro-Coljap? salts and 2.68 μM NAA under red light with a 16-h photoperiod. The addition of activated charoal did not stimulate either germination or the development of O. gloriosum seedlings. This study describes a single medium-based protocol able to achieve more than 330 000 seedlings within 40wk, starting from a single capsule. This protocol is sufficient for both large-scale propagation and in vitro conservation of this threatened orchid.  相似文献   

8.
Orchid–mycobiont specificity in the Orchidaceae was considered controversial and not well understood for many years. Differences in mycobiont specificity during germination in vitro vs in situ have lead some to consider orchid–mycobiont specificity as being generally low; however, others have suggested that specificity, especially in vitro, is surprisingly high. Mycobiont specificity may be genus or species specific. An in vitro symbiotic seed germination experiment was designed to examine mycobiont specificity of the endangered Florida terrestrial orchid Spiranthes brevilabris using mycobionts isolated from both the study species and the endemic congener Spiranthes floridana. In a screen of mycobionts, isolates Sflo-305 (99.5%), Sflo-306 (99.5%), and Sflo-308 (89.9%) (originating from S. floridana) supported higher initial (stage 1) seed germination than isolate Sbrev-266 (32.4%) (originating from S. brevilabris) after 3 wk culture. However, only isolate Sbrev-266 supported advanced germination and protocorm development to stage 5 (53.1%) after 12 wk culture. These findings suggest that S. brevilabris maintains a high degree of mycobiont specificity under in vitro symbiotic seed germination conditions. High orchid–mycobiont specificity in S. brevilabris may be indicative of the rare status of this orchid in Florida.  相似文献   

9.
The diversity of mycorrhizal fungi associated with an introduced weed-like South African orchid (Disa bracteata) and a disturbance-intolerant, widespread, native West Australian orchid (Pyrorchis nigricans) were compared by molecular identification of the fungi isolated from single pelotons. Molecular identification revealed both orchids were associated with fungi from diverse groups in the Rhizoctonia complex with worldwide distribution. Symbiotic germination assays confirmed the majority of fungi isolated from pelotons were mycorrhizal and a factorial experiment uncovered complex webs of compatibility between six terrestrial orchids and 12 fungi from Australia and South Africa. Two weed-like (disturbance-tolerant rapidly spreading) orchids — D. bracteata and the indigenous Australian Microtis media, had the broadest webs of mycorrhizal fungi. In contrast, other native orchids had relatively small webs of fungi (Diuris magnifica and Thelymitra crinita), or germinated exclusively with their own fungus (Caladenia falcata and Pterostylis sanguinea). Orchids, such as D. bracteata and M. media, which form relationships with diverse webs of fungi, had apparent specificity that decreased with time, as some fungi had brief encounters with orchids that supported protocorm formation but not subsequent seedling growth. The interactions between orchid mycorrhizal fungi and their hosts are discussed.  相似文献   

10.
Symbiotic seed germination is a critical stage in orchid life histories. Natural selection may act to favor plants that efficiently use mycorrhizal fungi. However, the necessary conditions for natural selection – variation, heritability, and differences in fitness – have not been demonstrated for either orchid or fungus. With the epiphytic orchid Tolumnia variegata as a model system, we ask the following questions: (1) Do seeds from different individuals in a population differ in germination and seedling development in the presence of the same fungi? (2) Do different mycorrhizal fungi (Ceratobasidium spp.) differ in ability to stimulate seed germination and growth in T. variegata? And (3) are the Ceratobasidium isolates that best induce seed germination and seedling development more closely related to each other than to isolates that are less effective? We performed symbiotic seed germination experiments in vitro. The experiments were done using mycorrhizal fungi isolated from T. variegata; relationships among the fungi were inferred from nuclear ribosomal ITS sequences. We found significant variation for both symbiotic germination and seedling growth among biparental seed crops obtained from a population of T. variegata plants. Differences among Ceratobasidium fungi in seed germination were significant. The fungi that induced highest seed germination and seedling development belonged to two of four clades of Ceratobasidium. The two experiments show that there is potential for natural selection to act on orchid–fungus relationships. Given that orchids vary in performance, and that mycorrhizal fungi are not geographically distributed homogeneously, mycorrhizae may affect population size, distribution and evolution of orchids.  相似文献   

11.
The rapid loss of native orchid habitat throughout ecologically important areas (e.g., Florida) has prompted researchers to develop appropriate plans for the propagation and reintroduction of many native orchid species. Ideally, symbiotic orchid seed germination methods are utilized in the production of orchid seedlings to be used in plant reintroduction programs. In the current study we (1) describe an efficient symbiotic seed germination protocol to germinate seeds of the rare sub-tropical terrestrial orchid Habenaria macroceratitis; (2) discuss the in vitro fungal specificity demonstrated by this species; and (3) describe the effects of three photoperiods (0/24 h, 16/8 h, 24/0 h L/D) on in vitro symbiotic seed germination of H. macroceratitis. Six fungal mycobionts were isolated from both vegetative and flowering plants of H. macroceratitis from two geographically distinct sites. Symbiotic seed germination percent was highest (65.7%) and protocorm development was most advanced (Stage 2) when seeds were cultured with fungal mycobiont Hmac-310. Seeds of H. macroceratitis demonstrated a degree of specificity toward fungal mycobionts isolated from plants originating from the same site where seed was collected. Continual darkness (0/24 h L/D) inhibited initial seed germination (Stage 1; 17.1%), but stimulated subsequent protocorm development (Stage 2; 53.5%). These findings will aid in developing an efficient symbiotic seed germination protocol for the conservation of this rare Florida terrestrial orchid, and may prove useful in the conservation of other sub-tropical terrestrial orchid species.  相似文献   

12.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

13.
腐生植物无叶美冠兰食源性欺骗传粉研究   总被引:1,自引:0,他引:1  
无叶美冠兰是一种典型的腐生兰科植物,为揭示该物种的自然传粉机制,拓展对兰科植物生殖特性的认识,在广西雅长兰科植物国家级自然保护区对其开展了传粉生态学观测研究。结果表明:无叶美冠兰花朵具备高度自交亲和能力,但不存在自动自花授粉机制,必须依赖外部传粉媒介把花粉送到柱头,实现有效传粉;绿彩带蜂是无叶美冠兰唯一有效传粉昆虫;传粉昆虫与花朵在与传粉功能相关的关键性状在形态上良好拟合;绿彩带蜂的访花活动主要发生在3个阶段:8.6%发生在9:00~11:30,80.2%发生在11:30~14:00,11.2%发生在14:00~15:30;花朵在中午强烈的阳光直射下挥发出香甜的气味。无叶美冠兰花朵主要通过挥发极具诱惑力的香甜气味和唇瓣上黄色的蜜导来诱导绿彩带蜂进入花朵中觅食,传粉昆虫与花朵在与传粉功能相关的关键性状在形态上良好拟合促成有效传粉,绿彩带蜂在整个传粉过程没有获得报酬,是食源性欺骗传粉机制。  相似文献   

14.
The identity and ecological role of fungi in the mycorrhizal roots of 25 species of mature terrestrial orchids and in 17 species of field incubated orchid seedlings were examined. Isolates of symbiotic fungi from mature orchid mycorrhizas were basidiomycetes primarily in the generaCeratorhiza, Epulorhiza andMoniliopsis; a few unidentified taxa with clamped hyphae were also recovered. More than one taxon of peloton-forming fungus was often observed in the cleared and stained mycorrhizas. AlthoughCeratorhiza andEpulorhiza strains were isolated from the developing protocorms, pelotons of clamped hyphae were often presents in the cleared protocorms of several orchid species. These basidiomycetes are difficult to isolate and may be symbionts of ectotrophic plants. The higher proportion of endophytes bearing clamp connections in developing seeds than in the mycorrhizas is attributed to differences in the nutritional requirements of the fully mycotrophic protocorms and partially autotrophic plants. Most isolates ofCeratorhiza differed enzymatically fromEpulorhiza in producing polyphenol oxidases. Dual cultures with thirteen orchid isolates and five non-orchid hosts showed that some taxa can form harmless associations with non-orchid hosts. It is suggested that most terrestrial orchid mycorrhizas are relatively non-specific and that the mycobionts can be saprophytes, parasites or mycorrhizal associates of other plants.  相似文献   

15.
Germination of orchid seeds is a complex process. In this paper we focus on interactions between the host-plant and its bacterial partners via indole-3-acetic acid (IAA). Originally isolated from the roots of the epiphytic orchid Dendrobium moschatum, the strains of Rhizobium, Microbacterium, Sphingomonas, and Mycobacterium genera were among the most active IAA producers. Addition of exogenous tryptophan significantly enhanced auxin formation both in mineral and complex media. The presence of IAA and indole-3-acetaldehyde was confirmed by HPLC. Indole-3-pyruvic and indole-3-lactic acids were also detected in supernatants of culture filtrates of Sphingomonas sp., Rhizobium sp., and Microbacterium sp., while indole-3-acetamide was identified only in Mycobacterium sp. Some concentration- and strain-dependent effects of exogenous IAA on bacterial development were also established. Treatment of the cultures with 10 and 100 μg/ml of auxin resulted in an increase in microbial yield. None of the investigated strains was able to utilize IAA as a source of carbon and energy. Furthermore, inoculation of D. moschatum seeds with Sphingomonas sp. and Mycobacterium sp. resulted in considerable enhancement of orchid seeds germination. This growth-promoting activity was observed in the absence of any plant growth stimulators or mycorrhizal fungi, usually required for orchid germination.  相似文献   

16.
Using a common temperate herbaceous terrestrial orchid from Australia (Caladenia latifolia) this study investigated 19 asymbiotic media variations comprising four commonly used basal media [half‐strength Murashige and Skoog (½MS), Knudson C (KC), Pa5, and Vacin and Went (VW), with combinations of the plant growth regulators 6‐benzylaminopurine (BA) and α‐naphthalene acetic acid (NAA) or coconut water (CW) and compared their performance with germination on a standard symbiotic germination medium, oatmeal agar (OMA). Percentage germination of seeds every 2 weeks for a total of 8 weeks (five replicates per treatment), time to germination, and growth and development phases in seedlings were recorded. ½MS with 5% (v/v) fresh CW delivered 93% germination, with seedling vigour and development indistinguishable from OMA (95% germination). The same protocol was applied to a further ten species (including the endangered Caladenia huegelii), demonstrating high asymbiotic germination performance (60–93%) across a wide phylogenetic range of terrestrial orchid species. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 556–566.  相似文献   

17.
The identity of mycorrhizal fungi associated with the achlorophyllous orchid Epipogium roseum was investigated by DNA analysis. The fungi were isolated from each coiled hypha (peloton), and the ITS region of nuclear rDNA was sequenced. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Psathyrella or Coprinus in Coprinaceae. Those fungi are known as saprobes, using dead organic materials for a nutritive source. Large colonies of this orchid were frequently found around tree stumps or fallen logs. In such colonies, these decaying wood materials would be used as a large and persistent carbon source for the growth of this orchid. This is the first report of Coprinaceae as an orchid mycorrhizal fungi.  相似文献   

18.
We have achieved the symbiotic cultivation of an apparently achlorophyllous orchid, Epipogium roseum Lindl., with a mycorrhizal fungus isolated from an underground organ of this orchid. Although the seed germination rate was extremely low, subsequent growth from protocorm to flowering was induced in a medium containing volcanic soils and sawdust. Stolons elongated from each protocorm, and rhizomes were formed at certain intervals on the stolons. Some of the rhizomes developed into a coralloid form, and tubers were formed from the coralloid rhizomes. The coralloid rhizomes degenerated concurrently with maturation of the tubers. Six months after seed sowing, around 80 tubers were produced from a single protocorm. An inflorescence appeared from each of the large tubers, and the process to flowering was observed in one of these. Consequently, the developmental processes from seed to flowering in E. roseum was clearly revealed in this study.  相似文献   

19.
A major obstacle to native orchid production is difficulty in seed germination. Culture media and light effects on seed germination of Calopogon tuberosus var. tuberosus, a native orchid with horticultural potential, were studied. Culture media included Knudson C, Malmgren modified terrestrial orchid, and PhytoTechnology orchid seed sowing. Effects of 8 weeks continual darkness, 8 weeks 16-h photoperiod, 2 weeks dark followed by 6 weeks 16-h photoperiod, 4 weeks dark followed by 4 weeks 16-h photoperiod, and 6 weeks dark followed by 2 weeks 16-h photoperiod were examined. Percent seed germination was highest on Knudson C after 8 weeks culture; however, seedling development was enhanced on PhytoTechnology seed sowing medium during 8 weeks culture under a 16-h photoperiod. This suggests that while KC and darkness promoted seed germination, P723 and light enhanced further seedling development. Seedlings of C. tuberosus readily acclimated to greenhouse conditions.  相似文献   

20.
兰科石斛属植物菌根真菌研究进展   总被引:1,自引:0,他引:1  
石斛属(Dendrobium)隶属于兰科(Orchidaceae)树兰亚科(Epidendroideae)石斛兰族(Dendrobiinae),是兰科最大的属之一,终生附生于树上或岩石上。石斛属很多种类具有很高的药用价值与观赏价值。由于人为过度采挖和野生生境的破坏,使得野生石斛资源濒临灭绝。石斛属植物为典型的兰科菌根植物,在自然条件下需要与真菌共生,才能完成生活史。菌根真菌对于石斛属植物的种子萌发和植株生长具有重要的作用。对石斛属植物菌根的形成、菌根真菌的作用、菌根真菌多样性及菌根技术在石斛属植物中的应用做了评述,并对今后的研究内容和重点提出了一些思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号