首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Bungarotoxin, the classic nicotinic antagonist, has high specificity for muscle type alpha1 subunits in nicotinic acetylcholine receptors. In this study, we show that an 11-amino-acid pharmatope sequence, containing residues important for alpha-bungarotoxin binding to alpha1, confers functional alpha-bungarotoxin sensitivity when strategically placed into a neuronal non-alpha subunit, normally insensitive to this toxin. Remarkably, the mechanism of toxin inhibition is allosteric, not competitive as with neuromuscular nicotinic receptors. Our findings argue that alpha-bungarotoxin binding to the pharmatope, inserted at a subunit-subunit interface diametrically distinct from the agonist binding site, interferes with subunit interface movements critical for receptor activation. Our results, taken together with the structural similarities between nicotinic and GABAA receptors, suggest that this allosteric mechanism is conserved in the Cys-loop ion channel family. Furthermore, as a general strategy, the engineering of allosteric inhibitory sites through pharmatope tagging offers a powerful new tool for the study of membrane proteins.  相似文献   

2.
Rigidified derivatives have been designed and synthesized assuming the g+t conformer of acetylcholine (N-C-C-O=+60 degrees, C-C-O-C=180 degrees ) as active conformation for binding to cytisine sensitive neuronal nicotinic receptors. The SAR of the compounds evaluated, along with those of more flexible analogues, support the g+t conformer hypothesis and highlight the stringent steric limitation of this nicotinic receptor sub-type. Compound 3e has low microM affinity for cytisine sensitive nicotinic receptor binding sites while being selective with regard to the alpha-bungarotoxin sensitive subclass. We also report few compounds with microM affinity for the alpha-bungarotoxin sensitive subclass.  相似文献   

3.
Four stable, hybrid-cell lines secreting monoclonal antibodies to distinct determinants on the nicotinic acetylcholine receptor from chick muscle have been established. These were characterised by the following criteria: immunoglobulin isotype, ability to produce experimental autoimmune myasthenia gravis in mice and reactivity towards homologous and heterologous acetylcholine receptor proteins. Two monoclonal antibodies were found to inhibit the reaction of alpha-bungarotoxin with homologous acetylcholine receptor; in addition one of these, on binding to receptor-toxin, induced a rapid dissociation of the complex (t1/2 = 0.5 h at 23 degrees C). Three of the antibody preparations recognised epitopes on this receptor from muscle of other species and two of these caused experimental autoimmune myasthenia gravis in BALB/c mice following passive transfer. The latter two recognised to significant extents the alpha-bungarotoxin binding component purified from chick optic lobe and brain cortex. Sedimentation analysis demonstrated that two of the monoclonal antibodies form a distinct size (s20, w = 12S) of complex with the receptor of chick muscle which most probably corresponds to a 1:1 attachment of antibody and receptor; this may involve cross-linking of two determinants within the same oligomer. A similar observation was made with the alpha-bungarotoxin binding component from optic lobe using one of the cross-reacting antibodies. Another monoclonal antibody was found to be capable of forming much heavier complexes with the receptor from chick muscle, these are thought to involve inter-molecular cross-linking of oligomers. The observed properties of these antibodies are discussed in relation to their myasthenogenicity and with reference to the extent of structural similarities between the peripheral nicotinic acetylcholine receptor and the alpha-bungarotoxin binding protein from brain.  相似文献   

4.
5.
1. The interaction of two specific ligands for the vertebrate nicotinic acetylcholine receptor were investigated on the solubilized form of a proposed acetylcholine receptor from the invertebrate Limulus polyphemus. 2. The affinity agent 4-(N-maleimodo)benzyltrimethylammonium iodide exhibited no effect on the binding of alpha-bungarotoxin to the Limulus receptor protein. 3. Torpedo acetylcholine receptor antibody neither inhibited alpha-bungarotoxin binding nor produced any alteration in the sedimentation profile of the Limulus receptor. 4. The lack of interaction of 4-(N-maleimido)benzyltrimethylammonium iodide and Torpedo acetylcholine receptor antibody with the Limulus acetylcholine receptor was interpreted to reflect significant difference between the molecular structures of this invertebrate receptor and the acetylcholine receptor of vertebrate.  相似文献   

6.
Two distinct binding sites with properties corresponding to those expected for nicotinic cholinergic receptors can be identified in brain by the specific binding of nicotine (or acetylcholine) and alpha-bungarotoxin. The effects of modification of these binding sites by treatment with the disulfide-reducing agent dithiothreitol were examined in tissue prepared from DBA mouse brains. Treatment with dithiothreitol reduced the binding measured with either ligand, and reoxidization of the disulfides fully restored binding. The effects of dithiothreitol treatment appeared to be due to a reduction in the maximal binding of nicotine and to a decrease in the binding affinity for alpha-bungarotoxin. Agonist affinity for the alpha-bungarotoxin binding site was reduced by treatment with low concentrations of dithiothreitol. The nicotine binding sites remaining after disulfide treatment displayed rates of ligand association and dissociation similar to those of unmodified tissue, but treatment of previously unmodified tissue with dithiothreitol accelerated the rate of nicotine dissociation. After reduction, both binding sites could be selectively alkylated with bromoacetylcholine. The results suggest that both putative nicotinic receptors in brain respond similarly to disulfide reduction and that their responses resemble those known for the nicotinic receptor of electric tissue.  相似文献   

7.
Neuronal nicotinic alpha-bungarotoxin sites   总被引:3,自引:0,他引:3  
At the vertebrate neuromuscular junction and in the electroplax of eel and electric fish, the nicotinic alpha-bungarotoxin site and the nicotinic receptor involved in synaptic transmission are very tightly coupled and, indeed, appear to be the same molecular component. On the other hand, the nature of the relationship between the nicotinic receptor mediating synaptic events and the nicotinic alpha-bungarotoxin binding site in nervous tissue has been a matter of controversy over the last few years. Experimental studies have been accumulating which suggest that in many neuronal tissues these two components are distinct molecular entities with their own unique regulation. However, it also appears that in other nervous tissues, possibly in species lower on the evolutionary scale, the toxin binding site is part of the nicotinic receptor. An evaluation of all available evidence would point to the conclusion that, in neuronal tissues, the nicotinic acetylcholine receptor involved in synaptic events and the nicotinic alpha-bungarotoxin site can exist both in a tightly coupled form and one in which the two sites are mutually distinct. The possible physiological significance of the nicotinic alpha-bungarotoxin site is discussed in light of current experimental data. Evidence is available which may imply that the alpha-toxin site, whether it is present as a distinct entity or in association with the nicotinic acetylcholine receptor, is involved in trophic or growth related activities, as well as in other cellular functions. The possibility of an endogenous ligand for the nicotinic alpha-bungarotoxin site is also discussed.  相似文献   

8.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

9.
Postnatal Development of Cholinergic Enzymes and Receptors in Mouse Brain   总被引:12,自引:0,他引:12  
The developmental profiles for the cholinergic enzymes acetylcholinesterase and choline acetyltransferase, and the muscarinic and nicotinic receptors were determined in whole mouse brain. The enzyme activities (per milligram of protein) increased steadily from birth, reaching adult levels at 20 days of age. These increases were primarily due to increases in Vmax. Muscarinic receptor numbers, measured by [3H]quinuclidinyl benzilate binding, also increased from birth to 25 days of age. Brain nicotinic receptors were measured with the ligands L-[3H]nicotine and alpha-[125I]-bungarotoxin. Neonatal mouse brain had approximately twice the number of alpha-bungarotoxin binding sites found in adult mouse brain. Binding site numbers rose slightly until 10 days of age, after which they decreased to adult values, which were reached at 25 days of age. The nicotine binding site was found in neonatal brain at concentrations comparable to those at the alpha-bungarotoxin site followed by a steady decline in nicotine binding until adult values were reached. Thus, brain nicotinic and muscarinic systems develop in totally different fashions; the quantity of muscarinic receptors increases with age, while the quantity of nicotinic receptors decreases. It is conceivable that nicotinic receptors play an important role in directing the development of the cholinergic system.  相似文献   

10.
Brain nicotinic acetylcholine receptors (nAChRs) are made up of protein subunits that differ from those constituting muscle nAChRs. To characterize the physiological properties of one class of avian brain nicotinic receptor, we injected the nuclei of Xenopus oocytes with full-length cDNAs for the ligand binding (alpha 4) and structural (n alpha) subunits. Injected oocytes had large ACh-induced currents in the microampere range that were insensitive to alpha-bungarotoxin, as expected for neuronal nAChRs. We found that these brain nAChRs incorporate at least two alpha 4 subunits and that their functional properties differ from muscle nAChRs in at least two respects: the elementary conductance is considerably smaller (20 pS), and channels in outside out patches stop functioning within a few minutes.  相似文献   

11.
We previously produced synthetic peptides mimicking the snake neurotoxin binding site of the nicotinic receptor. These peptide mimotopes bind the snake neurotoxin alpha-bungarotoxin with higher affinity than peptides reproducing native receptor sequences and inhibit toxin binding to nicotinic receptors in vitro; yet their efficiency in vivo is low. Here we synthesized one of the peptide mimotopes in a tetrabranched MAP form. The MAP peptide binds alpha-bungarotoxin in solution and inhibits its binding to the receptor with a K(A) and an IC(50) similar to the monomeric peptide. Nonetheless, it is at least 100 times more active in vivo. The MAP completely neutralizes toxin lethality when injected in mice at a dose compatible with its use as a synthetic antidote in humans. The in vivo efficacy of the tetrameric peptide cannot be ascribed to a kinetic and thermodynamic effect and is probably related to different pharmacokinetic behavior of the tetrameric molecule, with respect to the monomer. Our findings bring new perspectives to the therapeutic use of multimeric peptides.  相似文献   

12.
The alpha7 nicotinic receptors in human fetal brain and spinal cord   总被引:3,自引:0,他引:3  
The alpha7 nicotinic acetylcholine receptor subtype is believed to be involved in the regulation of neuronal growth, differentiation and synapse formation during the development of the human brain. In this study the expression of the alpha7 nicotinic acetylcholine receptor was investigated in human fetal brain and spinal cord of 5-11 weeks gestational age. Both the specific binding of [125I]alpha-bungarotoxin to prenatal brain membranes and the expression of alpha7 mRNA were significantly higher in the pons, medulla oblongata, mesencephalon and spinal cord of 9-11 weeks gestational age compared with cerebellum, cortex and subcortical forebrain. A significant positive correlation between gestational age and the expression of alpha7 mRNA was observed in all brain regions except cortex. A positive correlation was also observed between the gestational age and the [125I]alpha-bungarotoxin binding in the pons, medulla oblongata, mesencephalon, and cerebellum. Consequently, a significant relationship between the alpha7 mRNA levels and the binding sites for [125I]alpha-bungarotoxin was found in the fetal brain. The increasing levels of the alpha7 nicotinic acetylcholine receptor during the first trimester support the important role of nAChRs for the development of the central nervous system.  相似文献   

13.
Current studies suggest that several distinct populations of nicotinic acetylcholine (ACh) receptors exist. One of these is the muscle-type nicotinic receptors with which neuromuscular nicotinic receptor ligands and the snake toxin alpha-bungarotoxin interact. alpha-Bungarotoxin potently binds to these nicotinic receptors and blocks their function, two characteristics that have made the alpha-toxin a very useful probe for the characterization of these sites. In neuronal tissues, several populations of nicotinic receptors have been identified which, although they share a nicotinic pharmacology, have unique characteristics. The alpha-bungarotoxin-insensitive neuronal nicotinic receptors, which may be involved in mediating neuronal excitability, bind nicotinic agonists with high affinity but do not interact with alpha-bungarotoxin. Subtypes of these alpha-toxin-insensitive receptors appear to exist, as evidenced by findings that some are inhibited by neuronal bungarotoxin whereas others are not. In addition to the alpha-bungarotoxin-insensitive sites, alpha-bungarotoxin-sensitive neuronal nicotinic receptors are also present in neuronal tissues. These latter receptors bind alpha-bungarotoxin with high affinity and nicotinic agonists with an affinity in the microM range. The function of the nicotinic alpha-bungarotoxin receptors are as yet uncertain. Thymopoietin, a polypeptide linked to immune function, appears to interact specifically with nicotinic receptor populations that bind alpha-bungarotoxin. Thus, in muscle tissue where alpha-bungarotoxin both binds to the receptor and blocks activity, thymopoietin also potently binds to the receptor and inhibits nicotinic receptors-mediated function. In neuronal tissues, thymopoietin interacts only with the nicotinic alpha-bungarotoxin site and not the alpha-bungarotoxin-insensitive neuronal nicotinic receptor population. These observations that thymopoietin potently and specifically interacts with nicotinic alpha-bungarotoxin-sensitive receptors in neuronal and muscle tissue, together with findings that thymopoietin is an endogenously occurring agent, could suggest that this immune-related polypeptide represents a ligand for the alpha-bungarotoxin receptors. The function of thymopoietin at the alpha-bungarotoxin receptor is as yet uncertain; however, a potential trophic, as well as other roles are suggested.  相似文献   

14.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

15.
We have developed a novel competitive method to select from a phage display library a single chain Fv which is able to mimic the alpha-bungarotoxin binding site of the muscle nicotinic receptor. The single chain Fv was selected from a large synthetic library using alpha-bungarotoxin-coated magnetic beads. Toxin-bound phages were then eluted by competition with affinity purified nicotinic receptor. Recognition of the toxin by the anti-alpha-bungarotoxin single chain Fv was very similar to that of the receptor, such as indicated by the epitope mapping of alpha-bungarotoxin through overlapping synthetic peptides. Moreover, several positively charged residues located in the toxin second loop and in the C-terminal region were found to be critical, to a similar extent, for toxin recognition by the single chain Fv and the receptor. However, although the anti-alpha-bungarotoxin single chain Fv seems to mimic the toxin binding site of the nicotinic receptor, it does not bind other nicotinic agonists or antagonists. Our results suggest that competitive selection of anti-ligand antibody phages can allow the production of receptor-mimicking molecules directly and exclusively targeted at one specific ligand. Since physiologically and pharmacologically different ligands can produce opposite effects on receptor functions, such selective ligand decoys can have important therapeutic applications.  相似文献   

16.
Murine monoclonal antibodies have been produced against a 32 amino acid synthetic peptide corresponding to residues 173-204 on the alpha-subunit of the nicotinic acetylcholine receptor from Torpedo californica. All of the monoclonal antibodies were of the IgM subtype and most cross-reacted with the purified native receptor. None of the antibodies were effective in blocking alpha-bungarotoxin binding to the receptor nor, conversely, did alpha-bungarotoxin interfere with antibody binding. However, two monoclonal antibodies, previously shown to bind near the ligand binding site on the native receptor, did compete partially (50%) with the binding of one of the IgM monoclonal antibodies.  相似文献   

17.
Bacterially expressed cDNA fragments of the alpha-subunit of the nicotinic acetylcholine receptor previously have been shown to bind alpha-bungarotoxin (Gershoni, J. M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 4318-4321). Here, a novel system has been developed in which totally synthetic alpha-bungarotoxin binding sites are expressed in Escherichia coli transformants. The amino acid sequences, alpha 184-200 and alpha 184-196 of the Torpedo californica alpha-subunit of the nicotinic acetylcholine receptor were expressed as trpE fusion proteins via the expression vector pATH2 and a method for the enrichment of these fusion proteins is described. Quantitative analysis of toxin binding to the recombinant binding sites demonstrates that they bind toxin with affinities of KD = 2.5 X 10(-7) and 4.7 X 10(-6) M, respectively. Furthermore, the pharmacological profile of alpha 184-200 qualitatively reflects that of the intact receptor. These data not only indicate that the area of alpha 184-200 is an essential element of the cholinergic binding site but that residues alpha 197-200 contribute a point of contact between the receptor and alpha-bungarotoxin.  相似文献   

18.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

19.
This study establishes that presynaptic nicotinic receptors modulate dopamine release in the mouse striatum. Nicotinic agonists elicit a dose-dependent increase in the release of [3H]dopamine from synaptosomes prepared from mouse striatum. At low concentrations, this release is Ca2+ dependent, whereas at higher concentrations Ca(2+)-independent, mecamylamine-insensitive release was also observed. The Ca(2+)-dependent nicotine-evoked release was not blocked by alpha-bungarotoxin but was effectively blocked by neuronal bungarotoxin as well as several other nicotinic receptor antagonists. The relationship between potency for stimulation of release for agonists and potency for inhibition of release for antagonists was compared to the affinity of these compounds for the [3H]nicotine binding site. The overall correlation between release and binding potency was not high, but the drugs may be classified into separate groups, each of which has a high correlation with binding. This finding suggests either that more than one nicotinic receptor regulates dopamine release or that not all agonists interact with the same receptor in an identical fashion.  相似文献   

20.
R J Lukas  H Morimoto  E L Bennett 《Biochemistry》1979,18(11):2384-2395
Agonist-binding affinities of central nervous system nicotinic acetylcholine receptors (nAcChR) are sensitive to the duration of exposure to agonist. These agonist-induced changes in receptor state may be mimicked by appropriate modification of receptor thio groups and/or by manipulation of solvent ionic composition. In the absence of Ca2+, the concentration of acetylcholine (AcCh) necessary to prevent half of specific 3H-labeled alpha-bungarotoxin binding is approximately 1 mM for nAcChR treated with dithiothreitol (DTT) or DTT-N-ethylmaleimide (low-affinity states) and approximately 40 microM for nAcChR treated with DTT-5,5'-dithiobis(2-nitrobenzoic acid) or for native nAcChR pretreated with AcCh (high-affinity states). Addition of Ca2+ results in an increase in the effectiveness of AcCh toward blocking toxin binding. None of these treatments alters toxin or antagonist binding nor are there observed differences in Hill numbers for agonist binding. Agonists competitively inhibit toxin binding to low-affinity states, but noncompetitive inhibition is observed for binding to high-affinity states. Values of AcCh dissociation constants estimated from these data fall within the range of values determined physiologically with nAcChR from other systems. The data indicate that the redox state of brain nAcChR thio groups and Ca2+ may mediate physiologically important changes in the receptor state during activation and desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号