首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

2.
Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H+/2e quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.  相似文献   

3.
The technique of distance measurement, utilizing spin relaxation enhancement by an external probe, has been extended to the study of intrinsic semiquinone radicals through the use of holmium-EDTA complexes and continuous wave electron paramagnetic resonance spectroscopy. This technique has been used to determine the distance of the semiquinone anion, Qi (also designated as Qn.- or Qc.-), from the surface of the ubiquinone cytochrome c oxidoreductase, consisting of only three subunits, in membrane particles from Rhodobacter capsulates. The location of the semiquinone anion is 6-10 A from the N side protein, establishing that there are two separate quinone reaction sites, i.e., 'Qi' and 'Qo', within this complex on opposite sides of the membrane. The results are discussed in relation to reported ENDOR, EPR, and optical studies of the mitochondrial counterpart.  相似文献   

4.
A ubiquinone derivative, 3-chloro-5-hydroxyl-2-methyl-6-decyl- 1,4-benzoquinone (3-CHMDB), which shows different effects on the mitochondrial cytochrome b-c1 complex and chloroplast cytochrome b6-f complex, has been synthesized and characterized. When the cytochrome b-c1 complex is treated with varying concentrations of 3-CHMDB and assayed at constant substrate (Q2H2) concentration, a 50% inhibition is observed when 2 mol of 3-CHMDB per mol of enzyme are used. The degree of inhibition is dependent on the substrate concentration. When ubiquinol-cytochrome c reductase is treated with 2 mol of 3-CHMDB per mol of enzyme, less inhibition is observed with a lower substrate concentration, suggesting the possible existence of two forms of reductases: one with a high affinity for ubiquinone and another with a low affinity. 2-Chloro-5-hydroxyl-3-methyl-6-decyl-1,4-benzoquinone (2-CHMDB), an isomer of 3-CHMDB, shows much less inhibition of the mitochondrial cytochrome b-c1 complex, suggesting that the quinone binding site in this complex is highly specific. In contrast to the inhibition observed with the cytochrome b-c1 complex, 3-CHMDB causes no inhibition of the plastoquinol-plastocyanin reductase activity of chloroplast cytochrome b6-f complex, regardless of whether plastoquinol-2 or ubiquinol-2 is used as substrate. 3-CHMDB restores the dibromothymoquinone-altered EPR spectra of iron-sulfur protein in both complexes. In the case of the cytochrome b6-f complex, 3-CHMDB also partially restores the dibromothymoquinone-inhibited activity. Reduced form 3- or 2-CHMDB is oxidizable by the cytochrome b6-f complex, but not by the cytochrome b-c1 complex. These results suggest that the quinol oxidizing sites in the cytochrome b6-f complex may differ from those in the mitochondrial cytochrome b-c1 complex.  相似文献   

5.
Exchangeable protons in the immediate neighborhood of the semiquinone (SQ) at the Qi-site of the bc1 complex (ubihydroquinone:cytochrome c oxidoreductase (EC 1.10.2.2)) from Rhodobacter sphaeroides have been characterized using electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation spectroscopy (HYSCORE) and visualized by substitution of H2O by 2H2O. Three exchangeable protons interact with the electron spin of the SQ. They possess different isotropic and anisotropic hyperfine couplings that allow a clear distinction between them. The strength of interactions indicates that the protons are involved in hydrogen bonds with SQ. The hyperfine couplings differ from values typical for in-plane hydrogen bonds previously observed in model experiments. It is suggested that the two stronger couplings involve formation of hydrogen bonds with carbonyl oxygens, which have a significant out-of-plane character due to the combined influence of bulky substituents and the protein environment. These two hydrogen bonds are most probably to side chains suggested from crystallographic structures (His-217 and Asp-252 in R. sphaeroides). Assignment of the third hydrogen bond is more ambiguous but may involve either a bond between Asn-221 and a methoxy O-atom or a bond to water. The structural and catalytic roles of the exchangeable protons are discussed in the context of three high resolution crystallographic structures for mitochondrial bc1 complexes. Potential H-bonds, including those to water molecules, form a network connecting the quinone (ubiquinone) occupant and its ligands to the propionates of heme bH and the external aqueous phase. They provide pathways for exchange of protons within the site and with the exteriors, needed to accommodate the different hydrogen bonding requirements of different quinone species during catalysis.  相似文献   

6.
The effect of substituents on the 1,4-benzoquinone ring of ubiquinone on its electron-transfer activity in the bovine heart mitochondrial succinate-cytochrome c reductase region is studied by using synthetic ubiquinone derivatives that have a decyl (or geranyl) side-chain at the 6-position and various arrangements of methyl, methoxy and hydrogen in the 2, 3 and 5 positions of the benzoquinone ring. The reduction of quinone derivatives by succinate is measured with succinate-ubiquinone reductase and with succinate-cytochrome c reductase. Oxidation of quinol derivatives is measured with ubiquinol-cytochrome c reductase. The electron-transfer efficacy of quinone derivatives is compared to that of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone. When quinone derivatives are used as the electron acceptor for succinate-ubiquinone reductase, the methyl group at the 5-position is less important than are the methoxy groups at the 2- and 3-positions. Replacing the 5-methyl group with hydrogen causes a slight increase in activity. However, replacing one or both of 2- and 3-methoxy groups with a methyl completely abolishes electron-acceptor activity. Replacing the 3-methoxy group with hydrogen results in a complete loss of electron-acceptor activity, while replacing the 2-methoxy with hydrogen results in an activity decrease by 70%, suggesting that the methoxy group at the 3-position is more specific than that at the 2-position. The structural requirements for quinol derivatives to be oxidized by ubiquinol-cytochrome c reductase are less strict. All 1,4-benzoquinol derivatives examined show partial activity when used as electron donors for ubiquinol-cytochrome c reductase. Derivatives that possess one unsubstituted position at 2, 3 or 5, with a decyl group at the 6-position, show substrate inhibition at high concentrations. Such substrate inhibition is not observed when fully substituted derivatives are used. The structural requirements for quinone derivatives to be reduced by succinate-cytochrome c reductase are less specific than those for succinate-ubiquinone reductase. Replacing one or both of the 2- and 3-methoxy groups with a methyl and keeping the 5-position unsubstituted (plastoquinone derivatives) yields derivatives with no acceptor activity for succinate-Q reductase. However, these derivatives are reducible by succinate in the presence of succinate-cytochrome c reductase. This reduction is antimycin-sensitive and requires endogenous ubiquinone, suggesting that these (plastoquinone) derivatives can only accept electrons from the ubisemiquinone radical at the Qi site of ubiquinol-cytochrome c reductase, and cannot accept electrons from the QPs of succinate-ubiquinone reductase.  相似文献   

7.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.  相似文献   

8.
The succinate dehydrogenase isolated from Bacillus subtilis was found to catalyze the oxidation of succinate with hydrophilic quinones. Either naphthoquinones or benzoquinones served as acceptors. The enzyme activity increased with the redox potential of the quinone. The highest turnover number was commensurate with that of the bacterial succinate respiration in vivo. The succinate dehydrogenase was similarly active in fumarate reduction with quinols. The highest activity was obtained with the most electronegative quinol. The fumarate reductase isolated from Wolinella succinogenes catalyzed succinate oxidation with quinones and fumarate reduction with the corresponding quinols at activities similar to those of the B. subtilis enzyme. Succinate oxidation by the lipophilic quinones, ubiquinone or vitamin K-1, was monitored as cytochrome c reduction using proteoliposomes containing succinate dehydrogenase together with the cytochrome bc1 complex. The activity with ubiquinone or vitamin K-1 was commensurate with the succinate respiratory activity of bacteria or of the bacterial membrane fraction. The results suggest that menaquinone is involved in the succinate respiration of B. subtilis, although its redox potential is unfavorable.  相似文献   

9.
The steady-state kinetics of ubiquinol cytochrome c reductase was investigated in submitochondrial particles using ubiquinol-1 as electron donor in media of increasing viscosities obtained by water-polyethylene glycol mixtures. The minimum association rate constant, kmin = kcat/km, for cytochrome c was strongly viscosity dependent, whereas kmin for ubiquinol-1 was only weakly affected by viscosity. It is concluded that the interaction of cytochrome c with the membranous reductase is largely under diffusion control, whereas the oxidation of ubiquinol by the enzyme is not significantly controlled by diffusion in either the aqueous medium or the membrane. The results are compatible with the presence of a diffusion limited step in cytochrome c but not in ubiquinone in mitochondrial electron transfer.  相似文献   

10.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

11.
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.  相似文献   

12.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.  相似文献   

13.
The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively. Both are located on cytochrome b, a transmembrane protein of the bc1 complex that is encoded on the mitochondrial genome. To better understand the parameters that affect ligand binding at the Qn site, we applied the Qn site inhibitor ilicicolin H to select for mutations conferring resistance in Saccharomyces cerevisiae. The screen resulted in seven different single amino acid substitutions in cytochrome b rendering the yeast resistant to the inhibitor. Six of the seven mutations have not been previously linked to inhibitor resistance. Ubiquinol-cytochrome c reductase activities of mitochondrial membranes isolated from the mutants confirmed that the differences in sensitivity toward ilicicolin H originated in the cytochrome bc1 complex. Comparative in vivo studies using the known Qn site inhibitors antimycin and funiculosin showed little cross-resistance, indicating different modes of binding of these inhibitors at center N of the bc1 complex.  相似文献   

14.
Electron nuclear double resonance (ENDOR) was performed on the protein-bound, stabilized, high-affinity ubisemiquinone radical, QH*-, of bo3 quinol oxidase to determine its electronic spin distribution and to probe its interaction with its surroundings. Until this present work, such ENDOR studies of protein-stabilized ubisemiquinone centers have only been done on photosynthetic reaction centers whose function is to reduce a ubiquinol pool. In contrast, QH*- serves to oxidize a ubiquinol pool in the course of electron transfer from the ubiquinol pool to the oxygen-consuming center of terminal bo3 oxidase. As documented by large hyperfine couplings (>10 MHz) to nonexchangeable protons on the QH*- ubisemiquinone ring, we provide evidence for an electronic distribution on QH*- that is different from that of the semiquinones of reaction centers. Since the ubisemiquinone itself is physically nearly identical in both QH*- and the bacterial photosynthetic reaction centers, this electronic difference is evidently a function of the local protein environment. Interaction of QH*- with this local protein environment was explicitly shown by exchangeable deuteron ENDOR that implied hydrogen bonding to the quinone and by weak proton hyperfine couplings to the local protein matrix.  相似文献   

15.
Gao X  Wen X  Esser L  Quinn B  Yu L  Yu CA  Xia D 《Biochemistry》2003,42(30):9067-9080
Cytochrome bc(1) is an integral membrane protein complex essential to cellular respiration and photosynthesis. The Q cycle reaction mechanism of bc(1) postulates a separated quinone reduction (Q(i)) and quinol oxidation (Q(o)) site. In a complete catalytic cycle, a quinone molecule at the Q(i) site receives two electrons from the b(H) heme and two protons from the negative side of the membrane; this process is specifically inhibited by antimycin A and NQNO. The structures of bovine mitochondrial bc(1) in the presence or absence of bound substrate ubiquinone and with either the bound antimycin A(1) or NQNO were determined and refined. A ubiquinone with its first two isoprenoid repeats and an antimycin A(1) were identified in the Q(i) pocket of the substrate and inhibitor bound structures, respectively; the NQNO, on the other hand, was identified in both Q(i) and Q(o) pockets in the inhibitor complex. The two inhibitors occupied different portions of the Q(i) pocket and competed with substrate for binding. In the Q(o) pocket, the NQNO behaves similarly to stigmatellin, inducing an iron-sulfur protein conformational arrest. Extensive binding interactions and conformational adjustments of residues lining the Q(i) pocket provide a structural basis for the high affinity binding of antimycin A and for phenotypes of inhibitor resistance. A two-water-mediated ubiquinone protonation mechanism is proposed involving three Q(i) site residues His(201), Lys(227), and Asp(228).  相似文献   

16.
We have investigated the organisation of the photosynthetic apparatus in Phaeospirillum molischianum, using biochemical fractionation and functional kinetic measurements. We show that only a fraction of the ATP-synthase is present in the membrane regions which contain most of the photosynthetic apparatus and that, despite its complicated stacked structure, the intracytoplasmic membrane delimits a single connected space. We find that the diffusion time required for a quinol released by the reaction centre to reach a cytochrome bc1 complex is about 260 ms. On the other hand, the reduction of the cytochrome c chain by the cytochrome bc1 complex in the presence of a reduced quinone pool occurs with a time constant of about 5 ms. The overall turnover time of the cyclic electron transfer is about 25 ms in vivo under steady-state illumination. The sluggishness of the quinone shuttle appears to be compensated, at least in part, by the size of the quinone pool. Together, our results show that P. molischianum contains a photosynthetic system, with a very different organisation from that found in Rhodobacter sphaeroides, in which quinone/quinol diffusion between the RC and the cytochrome bc1 is likely to be the rate-limiting factor for cyclic electron transfer.  相似文献   

17.
Escherichia coli succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate reductase (QFR) are excellent model systems to understand the function of eukaryotic Complex II. They have structural and catalytic properties similar to their eukaryotic counterpart. An exception is that potent inhibitors of mammalian Complex II, such as thenoyltrifluoroacetone and carboxanilides, only weakly inhibit their bacterial counterparts. This lack of good inhibitors of quinone reactions and the higher level of side reactions in the prokaryotic enzymes has hampered the elucidation of the mechanism of quinone oxidation/reduction in E. coli Complex II. In this communication DT-diaphorase and an appropriate quinone are used to measure quinol-fumarate reductase activity and E. coli bo-oxidase and quinones are used to determine succinate-quinone reductase activity. Simple Michaelis kinetics are observed for both enzymes with ubiquinones and menaquinones in the succinate oxidase (forward) and fumarate reductase (reverse) reactions. The comparison of E. coli SQR and QFR demonstrates that 2-n-heptyl 4-hydroxyquinoline-N-oxide (HQNO) is a potent inhibitor of QFR in both assays; however, SQR is not sensitive to HQNO. A series of 2-alkyl-4,6-dinitrophenols and pentachlorophenol were found to be potent competitive inhibitors of both SQR and QFR. In addition, the isolated E. coli SQR complex demonstrates a mixed-type inhibition with carboxanilides, whereas the QFR complex is resistant to this inhibitor. The kinetic properties of SQR and QFR suggest that either ubiquinone or menaquinone operates at a single exchangeable site working in forward or reverse reactions. The pH activity profiles for E. coli QFR and SQR are similar showing maximal activity between pH 7.4 and 7.8, suggesting the importance of similar catalytic groups in quinol deprotonation and oxidation.  相似文献   

18.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

19.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

20.
Maki Hayashi  Tsutomu Unemoto   《BBA》1984,767(3):470-478
The Na+-dependent respiratory chain NADH: quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, was extracted from membrane by a detergent, Liponox DCH, and was purified by chromatography on QAE-Sephadex and Bio-Gel HTP. The activity of NADH oxidation was separated into two fractions. The one fraction could react with several artificial electron acceptors including Q-1, but could not reduce ubiquinone and menaquinone such as Q-5 and menaquinone-4, which was called NADH dehydrogenase. The other fraction could reduce Q-5 and menaquinone-4 in addition to the NADH dehydrogenase activity, which was called quinone reductase. The purified NADH dehydrogenase consumed NADH in excess of the amount of Q-1 and the reduced Q-1 (quinol) was not produced at all due to an oxidation-reduction cycle of semiquinone radicals. The quinone reductase, however, consumed NADH with the quantitative formation of quinol on account of a dismutation reaction of semiquinone radicals. Identical to the membrane-bound NADH: quinone oxidoreductase, the quinone reductase specifically required Na+ for the activity and was inhibited by 2-heptyl-4-hydroxyquinoline N-oxide. The electron transfer in the quinone reductase was formulated in a form of quinone cycle and the dismutation reaction of semiquinone radicals was assigned to be coupled to the Na+ pump in the respiratory chain of this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号