首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of ouabain on changes in transmembrane potential (TMP) and the membrane conductance has been studied in developing embryos of the loach Misgurnus fossilis L. Ouabain does not cause any significant changes in TMP level within 10-15 min after treatment but the membrane was then depolarized to a degree depending on developmental stage. Exposure to ouabain increases the conductance and changes the selectivity of membranes. Reversion potential of ionic current is then decreased from -70- -100 to -5- -30 mV. It is supposed that gradual membrane depolarization owing to the decrease of K+ gradient favors the membrane conductance changes under the influence of ouabain. It has been established that the active transport of Na+ and K+ takes part in realization of the rhythm of TMP level periodical oscillations during synchronous cleavage division.  相似文献   

2.
By using the patch-clamp technique, stretch-activated ionic channels were found in the membrane of cleaving freshwater fish embryos at the early stages of embryogenesis (2-256 cells). The application of negative pressure to the pipette increased the frequency of activation and the duration of bursts. This type of channel has a preferential K+ selectivity. When bathed on both membrane surfaces with 140 mM KCl the channel conductance was 71 pS. The kinetic behaviour did not depend markedly on either membrane potential (in the range from -70 to +70 mV) or calcium concentration on the cytoplasmic side of the membrane. On continuous recording, the probability of the channel being open was found to change periodically over a 5- to 20-fold range for different cells. These variations correlated with changes in resting potential and membrane conductance during the cell cycle. These results suggest that the oscillation of resting potential within the cell cycle is associated with the operation of stretch-activated ion channels.  相似文献   

3.
The membrane potential of primitive red cells from 4- and 6-day old chick embryos has been determined using the fluorescent dye Dis-C3-(5). At day 4 the membrane potential Em was -44 mV for pH 7.4 and 20 degrees C and -36 mV at day 6. Both values are far removed from the equilibrium potential for chloride, which is about -14 mV at day 6. Changes in the external potassium, sodium or chloride concentration were without effect on the membrane potential, except at very high potassium concentrations, where a small but significant depolarization was observed at day 6. The measurements gave the same results in the absence or presence of the anion exchange blocking agent DIDS. Three pieces of evidence indicate that the membrane potential of primitive red cells is primarily caused by an electrogenic H+ conductance: 1) The measured membrane potential of -36 mV at day 6 is close to the previously determined proton equilibrium potential (Baumann and Haller, 1983) EH + of -36 mV. 2) Addition of the electrosilent Cl-/OH- exchanger tributyltin causes a significant depolarization of about 20 mV at day 4 and about 14 mV at day 6. 3) Measurement of hydrogen ion fluxes demonstrate a potential dependent proton conductance, which increases with depolarization. These results indicate that large qualitative differences exist with regard to the mechanisms involved in the generation of membrane potential and hydrogen distribution between red cell and plasma of embryonic and adult chicken.  相似文献   

4.
The effects of fatigue on the membrane conductance of frog sartorius muscle at the resting potential and during an action potential were studied. When muscles were exposed to an extracellular pH of 8.0 the membrane conductance at the resting potential increased during fatigue by about 20% and returned to prefatigue level in about 20 min. The membrane conductance of muscle fibers exposed to pH 6.4 was about three times less than that of pH 8.0 and decreased further during fatigue. Furthermore, the recovery of a normal membrane conductance was slow at pH 6.4. Both the inward, depolarizing and the outward, repolarizing currents during the action potential are reduced in fatigue. In each case the effect is greater at pH 6.4 than at 8.0 and recovery towards normal values is slower at pH 6.4. It is concluded that the ionic conductance of the sarcolemmal membrane at the resting potential and during an action potential are modified by fatigue and that these changes are modulated by pHo.  相似文献   

5.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

6.
In the early embryos of ascidians and sea urchins, blastomeres are in electrical communication; however, the type and extent of interaction is related to the basic characteristics of the embryo. In the mosaic-like structure of the ascidian embryo, blastomeres have a coupling ratio of about 1 throughout the division cycle. Coupling is facilitated by the extremely low conductance of the non-junctional membrane and possibly mediated via specialized low resistance junctions. Sea urchin embryos do not have specialized low resistance junctions; however, blastomeres are electrically coupled, probably via cytoplasmic bridges, during the first half of the division cycle. The coupling ratio in sea urchins, initially about 0.3, progressively decreases, together with the conductance of the nonjunctional membrane. During the latter half of the division cycle blastomeres are uncoupled; however, a structural junction appears at the periphery, which may play a role in their destiny.  相似文献   

7.
Transport and electrical properties of the chick chorioallantoic membrane (CAM) were studied in order to find the osmoregulatory organ which helps to compensate the renal filtration-reabsorption disbalance of chick embryos. It could be shown that CAM resembles Na+ transporting epithelia in that active Na+ absorption is responsible for the potential difference and short circuit current, which could be abolished by ouabain on the ectodermal and amiloride on the endodermal side. The transepithelial conductance rose with increasing sodium concentration in accordance with the Michaelis-Menten kinetics. The allantoic sac thus plays a role similar to the toad urinary bladder despite the low potential difference and resistance which indicate that CAM is a leaky epithelium. CAM is therefore not only a respiratory but also an osmoregulatory organ.  相似文献   

8.
Equilibrium properties of a voltage-dependent junctional conductance   总被引:27,自引:2,他引:25       下载免费PDF全文
The conductance of junctions between amphibian blastomeres is strongly voltage dependent. Isolated pairs of blastomeres from embryos of Ambystoma mexicanum, Xenopus laevis, and Rana pipiens were voltage clamped, and junctional current was measured during transjunctional voltage steps. The steady-state junctional conductance decreases as a steep function of transjunctional voltage of either polarity. A voltage-insensitive conductance less than 5% of the maximum remains at large transjunctional voltages. Equal transjunctional voltages of opposite polarities produce equal conductance changes. The conductance is half maximal at a transjunctional voltage of approximately 15 mV. The junctional conductance is insensitive to the potential between the inside and outside of the cells. The changes in steady-state junctional conductance may be accurately modeled for voltages of each polarity as arising from a reversible two-state system in which voltage linearly affects the energy difference between states. The voltage sensitivity can be accounted for by the movement of about six electron charges through the transjunctional voltage. The changes in junctional conductance are not consistent with a current-controlled or ionic accumulation mechanism. We propose that the intramembrane particles that comprise gap junctions in early amphibian embryos are voltage-sensitive channels.  相似文献   

9.
Previous reports have demonstrated that large cationic polypeptides (of molecular mass 5,000 daltons or greater) cause an increase in the apical membrane conductance of the rabbit urinary bladder epithelium. This report investigates the effects of the small cationic molecule polymyxin B (PX: a 1,400 dalton antibiotic) on the permeability of the rabbit urinary bladder. The addition of micromolar concentrations of polymyxin B to the luminal solution of the rabbit urinary bladder resulted in an increase in the transepithelial conductance of the bladder. The magnitude of the increase in the conductance was dependent upon the concentration of PX, and the polarity and magnitude of the apical membrane potential. As the apical membrane potential was made more cell interior negative, the larger was the increase in the membrane conductance. This voltage-dependent increase in conductance was an exponential function of the applied voltage, with a negligible increase in conductance occurring when the membrane potential was cell interior positive. Upon changing the membrane voltage from cell interior positive to negative, there was a delay before there was a measurable change in the membrane conductance. The longer the apical membrane was exposed to PX, the more poorly reversible was its effect on the transepithelial conductance, suggesting a toxic effect of PX on this epithelium. Received: 9 May 1996/Revised: 17 July 1996  相似文献   

10.
M Hibino  H Itoh    K Kinosita  Jr 《Biophysical journal》1993,64(6):1789-1800
Changes in the membrane conductance of sea urchin eggs, during the course of electroporation, were investigated over the time range of 0.5 microsecond to 1 ms by imaging the transmembrane potential at a submicrosecond resolution with the voltage-sensitive fluorescent dye RH292. When a rectangular electric pulse of moderate intensity was applied across an egg, a position-dependent potential developed synchronously with the pulse, as theory predicts for a cell with an insulating membrane. From the rise and fall times, the membrane capacitance of unfertilized eggs was estimated to be 0.95 microF/cm2 and the intracellular conductance 220 omega.cm. Under an electric pulse of much higher intensity, the rise of the induced potential stopped at a certain level and then slowly decreased on the microsecond time scale. This saturation and subsequent reversal of the potential development was ascribed to the introduction of finite membrane conductance, or permeabilization of the membrane, by the action of the intense pulse (electroporation). Detailed analysis indicated the following: already at 0.5 microsecond in the rectangular electric pulse, the two sides of the egg facing the positive and negative electrodes were porated and gave a high membrane conductance in the order of 1 S/cm2; the conductance on the positive side appeared higher. Thereafter, the conductance increased steadily, reaching the order of 10 S/cm2 by 1 ms. This increase was faster on the negative-electrode side; by 1 ms the conductance on the negative side was more than twice that on the positive side. The recovery of the porated membrane after the pulse treatment was assessed from the membrane conductance estimated in a second electric pulse of a small amplitude. At least two recovery processes were distinguished, one with a time constant of 7 microseconds and the other 0.5 ms, at the end of which the membrane conductance was already < 0.1 S/cm2.  相似文献   

11.
At the early stages of development of the fresh water fish loach (Misgurnus fossilis) the resting membrane potential (Er) of cleaving cells oscillates periodically with an amplitude of 8-12 mV. Er oscillation correlates with the cell cycle and is accompanied by changes of K+ conductivity. Two types of K(+)-selective ionic channels with conductance of approximately 70 and 25 pS in symmetrical (150 mM KCl) solution were observed in the membrane of cleaving loach embryos. 'High' conductance and 'low' conductance channels were recorded in approximately 90% and 10% of patches investigated (n = 275), respectively? The activity of 'high' conductance channels was regulated by the application of pressure to the membrane, ie these channels were stretch-activated (SA). The activity of SA channels changes dramatically during the cell-cleavage cycle. At the beginning of interphase the probability of SA channels being in the open state (P0) was minimal, while at prometaphase the probability was increased 10-100-fold. Application of ATP to the cytoplasmic inside-out patches induced a reversible elevation of stretch sensitivity of the SA channels in 50% of the patches, while the non-hydrolyzable analogue of ATP was not effective. Combined application of ATP, cAMP and cAMP-dependent protein kinase (PK) induced a reversible elevation in the SA channel activity while inhibitors of PK prevented its activating effects. Phosphatase inhibitors prolonged the activating effect of PK on SA channels. We propose that oscillations of the resting potential during the cell-cleavage cycle arise due to modulation of SA channel sensitivity to stretch through cAMP-dependent phosphorylation.  相似文献   

12.
In Chara corallina, the membrane potential may stay much morenegative than the equilibrium potential for potassium in thedark, indicating that the proton pump is operative. The highproton conductance which occurs at high external pH, as indicatedby a high membrane conductance and a membrane potential nearthe equilibrium potential for protons, is not seen in the darkat pH 11. This effect is likely to be related to inhibitionof photosynthesis since DCMU has the same effect. The effectis similar but not identical to the effect of a decreased internalpH. Key words: Light, dark, membrane potential, Chara  相似文献   

13.
Membrane conductance of cultured rabbit articular chondrocytes was characterized by means of the patch-clamp technique. The resting membrane potential of the articular chondrocytes was about -42 mV. The membrane potential shifted in accordance with the prediction by the Nernst equation for Cl- when intracellular and extracellular concentrations of Cl- were changed. On the other hand, change in extracellular concentration of K+ produced no shift in the membrane potential of chondrocytes. The Cl- channel blocker 4-acetamido-4'-isothiocyanatostilbene-2'2-disulfonic acid (SITS) depolarized the membrane potential. These findings suggest that the membrane potential of the chondrocytes is determined mainly by Cl- conductance. Using the cell-attached patch-clamp method, a large unitary conductance of 217 pS was observed in the articular chondrocytes. The unitary current was reversibly blocked by SITS. Therefore, the unitary current was carried by Cl-. The Cl- channel showed voltage-dependent activation and the channels exhibited long-lasting openings. Therefore, the membrane potential of rabbit cultured articular chondrocytes was mainly determined by the activities of the large-conductance and voltage-dependent Cl- channels.  相似文献   

14.
A purified (Na+ + K+)-ATPase large subunit obtained from microsomes by water-alcohol extraction was incorporated into a bilayer lipid membrane. The protein formed in the membrane conductance channels which were sensitive to ouabain and selective for monovalent cations. ATP activated these channels in the presence of sodium and potassium ions. When sodium ions were eliminated ATP did not change the conductance of the modified membrane whereas p-nitrophenyl phosphate increased it. The (Na+ + K+)-ATPase large subunit incorporated into bilayer lipid membrane possessed an ATPase activity. The presence of a potential on the membrane was a necessary condition for the enzyme incorporated into a bilayer lipid membrane to show high ATPase activity. Increasing the potential above 100 mV resulted in the closing of conductance channels.  相似文献   

15.
We evaluated the conductances for ion flow across the cellular and paracellular pathways of flounder intestine using microelectrode techniques and ion-replacement studies. Apical membrane conductance properties are dominated by the presence of Ba-sensitive K channels. An elevated mucosal solution K concentration, [K]m, depolarized the apical membrane potential (psi a) and, at [K]m less than 40 mM, the K dependence of psi a was abolished by 1-2 mM mucosal Ba. The basolateral membrane displayed Cl conductance behavior, as evidenced by depolarization of the basolateral membrane potential (psi b) with reduced serosal Cl concentrations, [Cl]s. psi b was unaffected by changes in [K]s or [Na]s. From the effect of mucosal Ba on transepithelial K selectivity, we estimated that paracellular conductance (Gp) normally accounts for 96% of transepithelial conductance (Gt). The high Gp attenuates the contribution of the cellular pathway to psi t while permitting the apical K and basolateral Cl conductances to influence the electrical potential differences across both membranes. Thus, psi a and psi b (approximately 60 mV, inside negative) lie between the equilibrium potentials for K (76 mV) and Cl (40 mV), thereby establishing driving forces for K secretion across the apical membrane and Cl absorption across the basolateral membrane. Equivalent circuit analysis suggests that apical conductance (Ga approximately equal to 5 mS/cm2) is sufficient to account for the observed rate of K secretion, but that basolateral conductance (Gb approximately equal to 1.5 mS/cm2) would account for only 50% of net Cl absorption. This, together with our failure to detect a basolateral K conductance, suggests that Cl absorption across this barrier involves KCl co-transport.  相似文献   

16.
The analysis of polyion transmembrane translocation was performed using membrane electrical equivalent circuit. The dependence of polyion flux across membranes on time, membrane electrical conductance, membrane electrical capacitance, degree of polymerization, water solution conductance and applied transmembrane potential is discussed. The changes in polyion flux were up to 88% after 1 ms. Both the increase of polyion chain length and the decrease of membrane conductance resulted in the diminution of this effect. Inversion of flux direction was observed as a result of external potential changes. Reversal curves, representing the values of considered parameters for zero-flux were also shown. The replacement of a polyanion by a polycation of the same chain length resulted in the same shape of the surface plot but with opposite orientation. The analysis describes the effect of transmembrane potential on the translocation rate of polyanionic polysialic acid and polynucleotides, and polycationic peptides across membranes.  相似文献   

17.
The kinetics of the membrane current during the anomalous or inward- going rectification of the K current in the egg cell membrane of the starfish Mediaster aequalis were analyzed by voltage clamp. The rectification has instantaneous and time-dependent components. The time- dependent increase in the K conductance for the negative voltage pulse as well as the decrease in the conductance for the positive pulse follows first-order kinetics. The steady-state conductance increases as the membrane potential becomes more negative and reaches the saturation value at about -40 mV more negative than the K equilibrium potential, V(K). The entire K conductance can be expressed by g(K).n; g g(K) represents the component for the time-independent conductance which depends on V-V(K) and [K+]o, and n is a dimensionless number (1 is greater than or equal to n is greater than or equal to 0) and determined by two rate constants which depend only on V-V(K). Cs+ does not carry any significant current through the K channel but blocks the channel at low concentration in the external medium. The blocking effect increases as the membrane potential is made more negative and the potential-dependent blocking by the external Cs+ also has instantaneous and time-dependent components.  相似文献   

18.
Colistin interactions with the mammalian urothelium   总被引:4,自引:0,他引:4  
Here we describe the effect of colistin on the barrier function of the mammalian urinary bladder epithelium. Addition of colistin to the mucosal solution of the rabbit urinary bladder epithelium (urothelium) resulted in an increase in the transepithelial conductance. The magnitude of the increase in transepithelial conductance was dependent on the membrane voltage, concentration of colistin, and presence of divalent cations in the bath solution. The initial site of action of colistin was at the apical membrane. Colistin increased the membrane conductance only when the apical membrane potential was cell interior negative. The more negative the membrane potential, the larger the conductance increase. The concentration dependence of the conductance increase saturated, suggesting a membrane binding site. Divalent cations decreased the magnitude of the conductance increase. This divalent cation action occurred at two sites: one in competition with colistin for a membrane binding site, and the other by rapidly blocking the induced conductance. At short exposure times, the increase in conductance was reversed by either removing colistin from the bath or changing the voltage so that the apical membrane was cell interior positive. At long exposure times, the increase was only partially reversible by voltage or removal from the bath. This finding suggests that at long exposure times, there is a toxic effect of colistin on the urothelium. bladder epithelium; epithelial transport; tight junctions; antibiotics; cationic proteins  相似文献   

19.
Excitation of the Nitella membrane is analysed by assuming themembrane to be an electromotive force in series with a resistance,both being variables of time and of membrane potential. Duringstep depolarization beyond a threshold, conductance and electromotiveforce increase transiently, finally reaching their respectivesteady state levels. The conductance increase peak is attainedearlier than the peak for electromotive force increase. Wheneverelectromotive force increases beyond the level of clamped membranepotential, the ionic current flows inward. This is consideredto be the origin of the apparent negative resistance characteristicof the excitable membrane. Anodal break response and spontaneousfiring of Nitella membrane are also caused by transient increasesin electromotive force and conductance irrespective of whetherthe membrane potential is being held at its resting level. Thetransient increase in electromotive force reflects changes,like a phase transition, occurring during excitation. (Received May 6, 1968; )  相似文献   

20.
Summary Simultaneous membrane potential and membrane resistance measurements and current clamp experiments were performed on the visual sense cells ofCalliphora. The results suggest that the receptor potential is due to two different conductance variations: (i) a conductance increase for both Na+- and K+-ions upon illumination, and (ii) a light-independent conductance increase for K+-ions. Evidence is obtained that in the visual sense cells ofCalliphora the light-independent conductance increase is mediated by the influx of Ca2+-ions.The conclusion is that the increase of the intracellular Ca2+-ion concentration not only decreases the light-induced conductance, but also increases the light-independent conductance. So the potential of the sense cell is governed by two antagonistic conductances. The functional advantages of such a system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号